基于混合粒子群优化的潮流求解

A. El-Dib, H. Youssef, M. El-Metwally, Z. Osman
{"title":"基于混合粒子群优化的潮流求解","authors":"A. El-Dib, H. Youssef, M. El-Metwally, Z. Osman","doi":"10.1109/ICEEC.2004.1374585","DOIUrl":null,"url":null,"abstract":"Load flow (LF) is an important tool in the planning and operation of power systems. It is usually solved using conventional numerical techniques like Newton-Raphson (NR) or GaussSeidel (GS) methods. This paper presents an application of particle swarm optimization (PSO) in solving the load flow problem as an optimization problem. Examples on test systems are given to demonstrate the validity and applicability of the proposed method.","PeriodicalId":180043,"journal":{"name":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Load flow solution using hybrid particle swarm optimization\",\"authors\":\"A. El-Dib, H. Youssef, M. El-Metwally, Z. Osman\",\"doi\":\"10.1109/ICEEC.2004.1374585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load flow (LF) is an important tool in the planning and operation of power systems. It is usually solved using conventional numerical techniques like Newton-Raphson (NR) or GaussSeidel (GS) methods. This paper presents an application of particle swarm optimization (PSO) in solving the load flow problem as an optimization problem. Examples on test systems are given to demonstrate the validity and applicability of the proposed method.\",\"PeriodicalId\":180043,\"journal\":{\"name\":\"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEC.2004.1374585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEC.2004.1374585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

负荷潮流是电力系统规划和运行的重要工具。通常使用牛顿-拉夫森(NR)或高斯塞德尔(GS)方法等传统数值方法求解。本文将粒子群算法作为一种优化问题应用于求解负荷流问题。通过测试系统的实例验证了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Load flow solution using hybrid particle swarm optimization
Load flow (LF) is an important tool in the planning and operation of power systems. It is usually solved using conventional numerical techniques like Newton-Raphson (NR) or GaussSeidel (GS) methods. This paper presents an application of particle swarm optimization (PSO) in solving the load flow problem as an optimization problem. Examples on test systems are given to demonstrate the validity and applicability of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of superconducting microstrip line using transverse resonance technique Sensitivity of radial-basis networks to single-example decision classes Comparison of branch prediction schemes for superscalar processors ICEEC 2004 Integrator frequency synthesizer Fuzzy logic control of the mean arterial pressure of ICu patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1