一种基于双向GRU的心音直接分割方法

Tianqi Fan, Jin Zhu, Yongqiang Cheng, Qingde Li, Dongfei Xue, Robert Munnoch
{"title":"一种基于双向GRU的心音直接分割方法","authors":"Tianqi Fan, Jin Zhu, Yongqiang Cheng, Qingde Li, Dongfei Xue, Robert Munnoch","doi":"10.23919/IConAC.2018.8749010","DOIUrl":null,"url":null,"abstract":"Heart sound segmentation is a key step in automatic analysis of phonocardiogram (PCG) for early pathology detection. In this paper, we propose a novel method inspired by the Part of Speech (POS) tagging problem for heart sound segmentation. We use a Bi-directional Gated Recurrent Unit (GRU) to predict the state of the heart sound cycles directly, steering away from the traditionally used envelopes and time-frequency based features. Our method is evaluated on a large dataset using a 10-fold cross-validation. The proposed method has achieved overall 96.86% accuracy and the F1 score is 98.40% on the test sets. The proposed method has outperformed other existing state of the art methods by 1–3 percentage in terms of accuracy and F1.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A New Direct Heart Sound Segmentation Approach using Bi-directional GRU\",\"authors\":\"Tianqi Fan, Jin Zhu, Yongqiang Cheng, Qingde Li, Dongfei Xue, Robert Munnoch\",\"doi\":\"10.23919/IConAC.2018.8749010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart sound segmentation is a key step in automatic analysis of phonocardiogram (PCG) for early pathology detection. In this paper, we propose a novel method inspired by the Part of Speech (POS) tagging problem for heart sound segmentation. We use a Bi-directional Gated Recurrent Unit (GRU) to predict the state of the heart sound cycles directly, steering away from the traditionally used envelopes and time-frequency based features. Our method is evaluated on a large dataset using a 10-fold cross-validation. The proposed method has achieved overall 96.86% accuracy and the F1 score is 98.40% on the test sets. The proposed method has outperformed other existing state of the art methods by 1–3 percentage in terms of accuracy and F1.\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IConAC.2018.8749010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

心音分割是心音图自动分析和早期病理诊断的关键步骤。本文在词性标注问题的启发下,提出了一种新的心音分割方法。我们使用双向门控循环单元(GRU)来直接预测心音周期的状态,而不是传统上使用的包络和基于时频的特征。我们的方法使用10倍交叉验证在大型数据集上进行评估。该方法在测试集上的总体准确率为96.86%,F1分数为98.40%。所提出的方法在准确性和F1方面优于其他现有的最先进方法1 - 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Direct Heart Sound Segmentation Approach using Bi-directional GRU
Heart sound segmentation is a key step in automatic analysis of phonocardiogram (PCG) for early pathology detection. In this paper, we propose a novel method inspired by the Part of Speech (POS) tagging problem for heart sound segmentation. We use a Bi-directional Gated Recurrent Unit (GRU) to predict the state of the heart sound cycles directly, steering away from the traditionally used envelopes and time-frequency based features. Our method is evaluated on a large dataset using a 10-fold cross-validation. The proposed method has achieved overall 96.86% accuracy and the F1 score is 98.40% on the test sets. The proposed method has outperformed other existing state of the art methods by 1–3 percentage in terms of accuracy and F1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for Plagiarism Detection: A Case Study for Urdu Language Scale Detection Based on Maximum Entropy Principle Comparative Study of Eddy Current Pulsed and Long Pulse Optical Thermography for Defect Detection in Aluminium Plate Cost Minimization Control for Smart Electric Vehicle Car Parks Sliding Mode Control for Wearable Exoskeleton based on Disturbance Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1