{"title":"突发模式电路技术映射中平均时延优化","authors":"P. Beerel, K. Yun, W. Chou","doi":"10.1109/ASYNC.1996.494455","DOIUrl":null,"url":null,"abstract":"This paper presents technology mapping techniques that optimize for average case delay of asynchronous burst-mode control circuits. First, the specification of the circuit is analyzed using stochastic techniques to determine the relative frequency of occurrence of each state transition. Then, subject to timing and area constraints, the technology mapper minimizes the sum of the cycle times of the state transitions, weighted by their relative frequencies. Unlike other technology mappers, our mapper is based on the single step transition model for delay which finds the true critical paths, avoiding the false path problem.","PeriodicalId":365358,"journal":{"name":"Proceedings Second International Symposium on Advanced Research in Asynchronous Circuits and Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Optimizing average-case delay in technology mapping of burst-mode circuits\",\"authors\":\"P. Beerel, K. Yun, W. Chou\",\"doi\":\"10.1109/ASYNC.1996.494455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents technology mapping techniques that optimize for average case delay of asynchronous burst-mode control circuits. First, the specification of the circuit is analyzed using stochastic techniques to determine the relative frequency of occurrence of each state transition. Then, subject to timing and area constraints, the technology mapper minimizes the sum of the cycle times of the state transitions, weighted by their relative frequencies. Unlike other technology mappers, our mapper is based on the single step transition model for delay which finds the true critical paths, avoiding the false path problem.\",\"PeriodicalId\":365358,\"journal\":{\"name\":\"Proceedings Second International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Second International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC.1996.494455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Second International Symposium on Advanced Research in Asynchronous Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.1996.494455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing average-case delay in technology mapping of burst-mode circuits
This paper presents technology mapping techniques that optimize for average case delay of asynchronous burst-mode control circuits. First, the specification of the circuit is analyzed using stochastic techniques to determine the relative frequency of occurrence of each state transition. Then, subject to timing and area constraints, the technology mapper minimizes the sum of the cycle times of the state transitions, weighted by their relative frequencies. Unlike other technology mappers, our mapper is based on the single step transition model for delay which finds the true critical paths, avoiding the false path problem.