W. Kusuma, CarinaRega Utomo, Sindy Tervia, Rifani Setiawan
{"title":"PEMODELAN KASUS TUBERKULOSIS (TB) DI NUSA TENGGARA BARAT MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF","authors":"W. Kusuma, CarinaRega Utomo, Sindy Tervia, Rifani Setiawan","doi":"10.37755/jsm.v14i2.652","DOIUrl":null,"url":null,"abstract":"ABSTRACTTuberculosis is a direct infectious disease caused by bacteria (Mycobacterium tuberculosis). The number of TB cases in NTB in 2020 decreased by 16.58% from 2019. This needs to be analyzed to find out what factors influence tuberculosis so that the number of tuberculosis cases can be minimized. Data on the number of TB cases is count data, so the analysis used to model is Poisson regresi regression. In Poisson regression analysis, the phenomenon of overdispersion often occurs. If there is overdispersion, Poisson regression is not suitable for modeling the data because it will produce biased parameter estimates. One of the methods used to overcome overdispersion in Poisson regression is Negative Binomial regression. The results of the analysis show that there are four variables that are significant to the number of TB cases, namely population density (), number of health centers (), number of nursing staff (), and the percentage of households that have access to proper sanitation () with the model . The results of selecting the best model show that the Negative Binomial Regression model is better than the Poisson regression model based on the criteria for the goodness of the Deviance and AIC models.","PeriodicalId":330779,"journal":{"name":"Jurnal Serunai Matematika","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Serunai Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37755/jsm.v14i2.652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要结核病是由细菌(结核分枝杆菌)引起的直接传染病。2020年NTB病例数比2019年下降16.58%。这需要进行分析,找出影响结核病的因素,以便将结核病病例的数量降至最低。关于结核病病例数的数据为计数数据,因此用于建模的分析采用泊松回归。在泊松回归分析中,经常会出现过色散现象。如果存在过分散,泊松回归就不适合对数据建模,因为它会产生有偏的参数估计。在泊松回归中克服过分散的方法之一是负二项回归。分析结果表明,有四个变量对结核病病例数有显著影响,即人口密度()、保健中心数量()、护理人员数量()和获得适当卫生设施的家庭百分比()。优选结果表明,基于偏差和AIC模型的优度标准,负二项回归模型优于泊松回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEMODELAN KASUS TUBERKULOSIS (TB) DI NUSA TENGGARA BARAT MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF
ABSTRACTTuberculosis is a direct infectious disease caused by bacteria (Mycobacterium tuberculosis). The number of TB cases in NTB in 2020 decreased by 16.58% from 2019. This needs to be analyzed to find out what factors influence tuberculosis so that the number of tuberculosis cases can be minimized. Data on the number of TB cases is count data, so the analysis used to model is Poisson regresi regression. In Poisson regression analysis, the phenomenon of overdispersion often occurs. If there is overdispersion, Poisson regression is not suitable for modeling the data because it will produce biased parameter estimates. One of the methods used to overcome overdispersion in Poisson regression is Negative Binomial regression. The results of the analysis show that there are four variables that are significant to the number of TB cases, namely population density (), number of health centers (), number of nursing staff (), and the percentage of households that have access to proper sanitation () with the model . The results of selecting the best model show that the Negative Binomial Regression model is better than the Poisson regression model based on the criteria for the goodness of the Deviance and AIC models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PERBEDAAN MODEL PEMBELAJARAN THINK TALK WRITE DENGAN THINK PAIR SHARE TERHADAP KEMAMPUAN KOMUNIKASI MATEMATIKA SISWA KELAS VIII SMP ABDI NEGARA BINJAI PENGARUH PENGGUNAAN MULTIMEDIA INTERAKTIF PADA PEMBELAJARAN MATEMATIKA BERBASIS DARING POKOK BAHASAN PERSAMAAN KUADRAT TERHADAP KEMAMPUAN PEMAHAMAN SISWA KELAS VIII MTSS NURUL IHSAN Pengembangan Hypothetical Learning Trajectory (HLT) Berbasis Realistic Mathematics Education (RME) Pada Materi Geometri PERMASALAHAN PEMBELAJARAN DARING PADA PELAJARAN MATEMATIKA DI MASA PANDEMI COVID-19 PEMODELAN KASUS TUBERKULOSIS (TB) DI NUSA TENGGARA BARAT MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1