Panagiotis Delizisis, I. Dolianitis, D. Chatzipetros, Vasileios Kanas, G. Georgallis, Konstantinos Tastavridis, Antonios Stamelos, Efstratios Angelis
{"title":"三芯HVAC海底电缆的全尺寸轴向、弯曲和扭转刚度试验","authors":"Panagiotis Delizisis, I. Dolianitis, D. Chatzipetros, Vasileios Kanas, G. Georgallis, Konstantinos Tastavridis, Antonios Stamelos, Efstratios Angelis","doi":"10.1115/omae2021-63238","DOIUrl":null,"url":null,"abstract":"\n Submarine, export cables behave, to some point, as long, flexible cylindrical bodies. Their mechanical performance is crucial during laying and operating processes, which depends to a large extent on their stiffness. Although theoretical methods, used to estimate cable stiffness, are currently available, it is difficult to account for the various physical mechanisms involved, such as internal friction, residual torsion and ‘relaxation’ effects. These mechanisms are expected to affect cable stiffness and should be included some way. To represent more realistically cable stiffness, full-scale tests are performed in this paper. The deviation between theoretical and experimental values appears to be significant in certain cases: hence, non-realistic values for cable stiffness would occur if the stiffness estimation relied only on the theoretical methods. Interesting results, affording an in more depth insight and allowing for a better understanding of the cable mechanical performance, are presented in this paper.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Full Scale Axial, Bending and Torsion Stiffness Tests of a Three Core HVAC Submarine Cable\",\"authors\":\"Panagiotis Delizisis, I. Dolianitis, D. Chatzipetros, Vasileios Kanas, G. Georgallis, Konstantinos Tastavridis, Antonios Stamelos, Efstratios Angelis\",\"doi\":\"10.1115/omae2021-63238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Submarine, export cables behave, to some point, as long, flexible cylindrical bodies. Their mechanical performance is crucial during laying and operating processes, which depends to a large extent on their stiffness. Although theoretical methods, used to estimate cable stiffness, are currently available, it is difficult to account for the various physical mechanisms involved, such as internal friction, residual torsion and ‘relaxation’ effects. These mechanisms are expected to affect cable stiffness and should be included some way. To represent more realistically cable stiffness, full-scale tests are performed in this paper. The deviation between theoretical and experimental values appears to be significant in certain cases: hence, non-realistic values for cable stiffness would occur if the stiffness estimation relied only on the theoretical methods. Interesting results, affording an in more depth insight and allowing for a better understanding of the cable mechanical performance, are presented in this paper.\",\"PeriodicalId\":240325,\"journal\":{\"name\":\"Volume 4: Pipelines, Risers, and Subsea Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Pipelines, Risers, and Subsea Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2021-63238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-63238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full Scale Axial, Bending and Torsion Stiffness Tests of a Three Core HVAC Submarine Cable
Submarine, export cables behave, to some point, as long, flexible cylindrical bodies. Their mechanical performance is crucial during laying and operating processes, which depends to a large extent on their stiffness. Although theoretical methods, used to estimate cable stiffness, are currently available, it is difficult to account for the various physical mechanisms involved, such as internal friction, residual torsion and ‘relaxation’ effects. These mechanisms are expected to affect cable stiffness and should be included some way. To represent more realistically cable stiffness, full-scale tests are performed in this paper. The deviation between theoretical and experimental values appears to be significant in certain cases: hence, non-realistic values for cable stiffness would occur if the stiffness estimation relied only on the theoretical methods. Interesting results, affording an in more depth insight and allowing for a better understanding of the cable mechanical performance, are presented in this paper.