Cerberus:边缘计算中的隐私保护计算

Di Zhang, Lei Fan
{"title":"Cerberus:边缘计算中的隐私保护计算","authors":"Di Zhang, Lei Fan","doi":"10.1109/INFOCOMWKSHPS50562.2020.9162942","DOIUrl":null,"url":null,"abstract":"Edge computing reduces the overhead of data centers and improves the efficiency of data processing. However, traditional cloud data protection mechanisms are no longer applicable to edge devices. Data leakage and other privacy issues may occur when computation is outsourced to edge nodes. The decentralization raises new privacy challenge for data control, storage and computation. In this work, we present Cerberus, a brand-new framework that preserves data privacy in edge computing by combining blockchain, distributed data storage and trusted execution environment (TEE). Blockchain is used to maintain a global computation state, and also acts as a medium of information interaction. Distributed data storage provides a secure and large-capacity storage. TEE-based off-chain computation guarantees confidentiality and efficiency of data processing. We also implement a prototype of Cerberus using Hyperledger Fabric and Intel SGX. Our evaluation on a sample of data sorting application shows that Cerberus achieves significant speed ups over previous cryptographic schemes. Compared with non secure computation, Cerberus can preserve data privacy without incurring much performance loss.","PeriodicalId":104136,"journal":{"name":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"16 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Cerberus: Privacy-Preserving Computation in Edge Computing\",\"authors\":\"Di Zhang, Lei Fan\",\"doi\":\"10.1109/INFOCOMWKSHPS50562.2020.9162942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing reduces the overhead of data centers and improves the efficiency of data processing. However, traditional cloud data protection mechanisms are no longer applicable to edge devices. Data leakage and other privacy issues may occur when computation is outsourced to edge nodes. The decentralization raises new privacy challenge for data control, storage and computation. In this work, we present Cerberus, a brand-new framework that preserves data privacy in edge computing by combining blockchain, distributed data storage and trusted execution environment (TEE). Blockchain is used to maintain a global computation state, and also acts as a medium of information interaction. Distributed data storage provides a secure and large-capacity storage. TEE-based off-chain computation guarantees confidentiality and efficiency of data processing. We also implement a prototype of Cerberus using Hyperledger Fabric and Intel SGX. Our evaluation on a sample of data sorting application shows that Cerberus achieves significant speed ups over previous cryptographic schemes. Compared with non secure computation, Cerberus can preserve data privacy without incurring much performance loss.\",\"PeriodicalId\":104136,\"journal\":{\"name\":\"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"16 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

边缘计算降低了数据中心的开销,提高了数据处理的效率。然而,传统的云数据保护机制已不再适用于边缘设备。当计算外包给边缘节点时,可能会出现数据泄漏和其他隐私问题。去中心化对数据控制、存储和计算提出了新的隐私挑战。在这项工作中,我们提出了Cerberus,这是一个全新的框架,通过结合区块链,分布式数据存储和可信执行环境(TEE)来保护边缘计算中的数据隐私。区块链用于维护全局计算状态,同时也作为信息交互的媒介。分布式数据存储提供了安全、大容量的存储方式。基于tee的脱链计算保证了数据处理的保密性和效率。我们还使用Hyperledger Fabric和Intel SGX实现了Cerberus的原型。我们对数据排序应用程序样本的评估表明,Cerberus比以前的加密方案实现了显着的速度提升。与非安全计算相比,Cerberus在保护数据隐私的同时不会造成很大的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cerberus: Privacy-Preserving Computation in Edge Computing
Edge computing reduces the overhead of data centers and improves the efficiency of data processing. However, traditional cloud data protection mechanisms are no longer applicable to edge devices. Data leakage and other privacy issues may occur when computation is outsourced to edge nodes. The decentralization raises new privacy challenge for data control, storage and computation. In this work, we present Cerberus, a brand-new framework that preserves data privacy in edge computing by combining blockchain, distributed data storage and trusted execution environment (TEE). Blockchain is used to maintain a global computation state, and also acts as a medium of information interaction. Distributed data storage provides a secure and large-capacity storage. TEE-based off-chain computation guarantees confidentiality and efficiency of data processing. We also implement a prototype of Cerberus using Hyperledger Fabric and Intel SGX. Our evaluation on a sample of data sorting application shows that Cerberus achieves significant speed ups over previous cryptographic schemes. Compared with non secure computation, Cerberus can preserve data privacy without incurring much performance loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for Bandwidth and Latency Guaranteed Service in New IP Network Energy Minimization for MEC-enabled Cellular-Connected UAV: Trajectory Optimization and Resource Scheduling A Multi-property Method to Evaluate Trust of Edge Computing Based on Data Driven Capsule Network Real Time Adaptive Networking using Programmable 100Gbps NIC on Data Transfer Nodes IRS Assisted Multiple User Detection for Uplink URLLC Non-Orthogonal Multiple Access
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1