基于机器学习的荧光样品感知颜色外观模型

Hung-Chung Li, P. Sun, Wei-Chih Su, Hung-Shing Chen, Chia-Pin Chueh, Yennun Huang
{"title":"基于机器学习的荧光样品感知颜色外观模型","authors":"Hung-Chung Li, P. Sun, Wei-Chih Su, Hung-Shing Chen, Chia-Pin Chueh, Yennun Huang","doi":"10.1109/OECC48412.2020.9273718","DOIUrl":null,"url":null,"abstract":"Two machine learning models, including the polynomial regression model and artificial neural network, are proposed based on the result of a visual perception experiment of fluorescent samples. The results indicate that both two models can ideally predict the visual color appearance of fluorescent samples under various lighting conditions with high R-squared, acceptable RMSE, and MAE values.","PeriodicalId":433309,"journal":{"name":"2020 Opto-Electronics and Communications Conference (OECC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perceptual Color Appearance Models of Fluorescent Samples Based on Machine Learning\",\"authors\":\"Hung-Chung Li, P. Sun, Wei-Chih Su, Hung-Shing Chen, Chia-Pin Chueh, Yennun Huang\",\"doi\":\"10.1109/OECC48412.2020.9273718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two machine learning models, including the polynomial regression model and artificial neural network, are proposed based on the result of a visual perception experiment of fluorescent samples. The results indicate that both two models can ideally predict the visual color appearance of fluorescent samples under various lighting conditions with high R-squared, acceptable RMSE, and MAE values.\",\"PeriodicalId\":433309,\"journal\":{\"name\":\"2020 Opto-Electronics and Communications Conference (OECC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Opto-Electronics and Communications Conference (OECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OECC48412.2020.9273718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Opto-Electronics and Communications Conference (OECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OECC48412.2020.9273718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于荧光样品的视觉感知实验结果,提出了多项式回归模型和人工神经网络两种机器学习模型。结果表明,两种模型均能较理想地预测不同光照条件下荧光样品的视觉颜色外观,具有较高的r平方、可接受的RMSE和MAE值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perceptual Color Appearance Models of Fluorescent Samples Based on Machine Learning
Two machine learning models, including the polynomial regression model and artificial neural network, are proposed based on the result of a visual perception experiment of fluorescent samples. The results indicate that both two models can ideally predict the visual color appearance of fluorescent samples under various lighting conditions with high R-squared, acceptable RMSE, and MAE values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wide-Range Wavelength Switching at TDA-DFB Laser by Nonlinear Model OECC 2020 Contributor Page Low-Complexity DSP Configuration for Short-Reach Transmission Systems Pilot Beam-Assisted Adaptive Compensation for Atmospheric Turbulence-Induced Phase Fluctuation on Beams Carrying Orbital Angular Momentum Low-Margin Optical-Link Setting for Error-Tolerant TCPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1