一种定量测定水中BOD和COD的简易方法

Sanket Soni, A. Khurshid, Anushree Mrugank Minase, Ashlesha Bonkinpelliwar
{"title":"一种定量测定水中BOD和COD的简易方法","authors":"Sanket Soni, A. Khurshid, Anushree Mrugank Minase, Ashlesha Bonkinpelliwar","doi":"10.1109/PCEMS58491.2023.10136050","DOIUrl":null,"url":null,"abstract":"Water quality prediction is a crucial process before any consumption of water. Prediction and modeling methods are used for pollutants in water to deal with water pollution control. This work involves the use of a random forest learning algorithm to quantitate BOD and COD using parameter tuning to establish the importance of input variables. It uses minimal sensed quantitative parameters such as Temperature, pH, DO, and Conductivity along with categorical parameters. The trained model shows excellent efficiency compared to other models and is validated using the laboratory test results with a maximum error of 10%. It is computationally low-cost, requires minimal parameters, and is pruned to integrate and implement in an IoT hardware system, reducing the cost of expensive sensors.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A TinyML Approach for Quantification of BOD and COD in Water\",\"authors\":\"Sanket Soni, A. Khurshid, Anushree Mrugank Minase, Ashlesha Bonkinpelliwar\",\"doi\":\"10.1109/PCEMS58491.2023.10136050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water quality prediction is a crucial process before any consumption of water. Prediction and modeling methods are used for pollutants in water to deal with water pollution control. This work involves the use of a random forest learning algorithm to quantitate BOD and COD using parameter tuning to establish the importance of input variables. It uses minimal sensed quantitative parameters such as Temperature, pH, DO, and Conductivity along with categorical parameters. The trained model shows excellent efficiency compared to other models and is validated using the laboratory test results with a maximum error of 10%. It is computationally low-cost, requires minimal parameters, and is pruned to integrate and implement in an IoT hardware system, reducing the cost of expensive sensors.\",\"PeriodicalId\":330870,\"journal\":{\"name\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"volume\":\"2010 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCEMS58491.2023.10136050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水质预测是用水前的重要环节。对水体中的污染物采用预测和建模的方法进行水污染控制。这项工作涉及使用随机森林学习算法来量化BOD和COD,使用参数调整来确定输入变量的重要性。它使用最小的感测定量参数,如温度,pH值,DO和电导率以及分类参数。与其他模型相比,训练后的模型具有良好的效率,并使用实验室测试结果进行了验证,最大误差为10%。它计算成本低,需要最小的参数,并且可以在物联网硬件系统中集成和实施,从而降低昂贵传感器的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A TinyML Approach for Quantification of BOD and COD in Water
Water quality prediction is a crucial process before any consumption of water. Prediction and modeling methods are used for pollutants in water to deal with water pollution control. This work involves the use of a random forest learning algorithm to quantitate BOD and COD using parameter tuning to establish the importance of input variables. It uses minimal sensed quantitative parameters such as Temperature, pH, DO, and Conductivity along with categorical parameters. The trained model shows excellent efficiency compared to other models and is validated using the laboratory test results with a maximum error of 10%. It is computationally low-cost, requires minimal parameters, and is pruned to integrate and implement in an IoT hardware system, reducing the cost of expensive sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1