基于机器学习的数字多尔蒂功率放大器

R. Ma, M. Benosman, K. Manjunatha, Y. Komatsuzaki, S. Shinjo, K. Teo, P. Orlik
{"title":"基于机器学习的数字多尔蒂功率放大器","authors":"R. Ma, M. Benosman, K. Manjunatha, Y. Komatsuzaki, S. Shinjo, K. Teo, P. Orlik","doi":"10.1109/RFIT.2018.8524126","DOIUrl":null,"url":null,"abstract":"This paper reports a new architecture of power amplifiers (PA), for which machine learning is applied in real-time to adaptively optimize PA performance. For varying input stimuli such as carrier frequency, bandwidth and power level, developed algorithms can intelligently optimize parameters including bias voltages, input signal phases and power splitting ratios based on a user-defined cost function. Our demonstrator of a wideband GaN Digital Doherty PA achieves significant performance enhancement from 3.0-3.8 GHz, in particular, at high backoff power with approximately 3dB more Gain and 20% higher efficiency compared with analog counterpart. To the authors' best knowledge, this is the first reported work of model-free machine learning applied for Doherty PA control. It explores a new area of RF PA optimization, in which accurate analytical models and tedious manual tuning can be avoided.","PeriodicalId":297122,"journal":{"name":"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Machine-Learning Based Digital Doherty Power Amplifier\",\"authors\":\"R. Ma, M. Benosman, K. Manjunatha, Y. Komatsuzaki, S. Shinjo, K. Teo, P. Orlik\",\"doi\":\"10.1109/RFIT.2018.8524126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a new architecture of power amplifiers (PA), for which machine learning is applied in real-time to adaptively optimize PA performance. For varying input stimuli such as carrier frequency, bandwidth and power level, developed algorithms can intelligently optimize parameters including bias voltages, input signal phases and power splitting ratios based on a user-defined cost function. Our demonstrator of a wideband GaN Digital Doherty PA achieves significant performance enhancement from 3.0-3.8 GHz, in particular, at high backoff power with approximately 3dB more Gain and 20% higher efficiency compared with analog counterpart. To the authors' best knowledge, this is the first reported work of model-free machine learning applied for Doherty PA control. It explores a new area of RF PA optimization, in which accurate analytical models and tedious manual tuning can be avoided.\",\"PeriodicalId\":297122,\"journal\":{\"name\":\"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIT.2018.8524126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2018.8524126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文报道了一种新的功率放大器(PA)结构,该结构利用机器学习实时自适应优化功率放大器的性能。对于载波频率、带宽和功率等不同的输入刺激,开发的算法可以基于用户定义的成本函数智能优化参数,包括偏置电压、输入信号相位和功率分割比。我们的宽带GaN数字Doherty PA演示器在3.0-3.8 GHz范围内实现了显着的性能增强,特别是在高回退功率下,与模拟对偶相比,增益增加约3dB,效率提高20%。据作者所知,这是首次报道的将无模型机器学习应用于Doherty PA控制的工作。它探索了射频PA优化的一个新领域,可以避免精确的分析模型和繁琐的手动调谐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine-Learning Based Digital Doherty Power Amplifier
This paper reports a new architecture of power amplifiers (PA), for which machine learning is applied in real-time to adaptively optimize PA performance. For varying input stimuli such as carrier frequency, bandwidth and power level, developed algorithms can intelligently optimize parameters including bias voltages, input signal phases and power splitting ratios based on a user-defined cost function. Our demonstrator of a wideband GaN Digital Doherty PA achieves significant performance enhancement from 3.0-3.8 GHz, in particular, at high backoff power with approximately 3dB more Gain and 20% higher efficiency compared with analog counterpart. To the authors' best knowledge, this is the first reported work of model-free machine learning applied for Doherty PA control. It explores a new area of RF PA optimization, in which accurate analytical models and tedious manual tuning can be avoided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 60-GHz Wideband Down-conversion Mixer for Low-power and High-speed Wireless Communication Linearization Technologies for Power Amplifiers of Cellular Base Stations 16-Channel High-CMRR Neural-Recording Amplifiers Using Common-Made-Tracking Power Supply Rails A Fully-Integrated $S$-Band Differential LNA in $0.15-\mu \mathrm{m}$ GaAs pHEMT for Radio Astronomical Receiver A Drain Resistance Degradation Modeling Procedure of LDMOS's
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1