{"title":"使用实时光线追踪的大规模模型可视化","authors":"Andreas Dietrich, P. Slusallek","doi":"10.1145/1281500.1281570","DOIUrl":null,"url":null,"abstract":"In the last years real-time ray tracing has become an attractive alternative to rasterization based rendering, particularly for highly complex datasets including both surface and volume data. Ray tracing [7, 15] is a much more flexible rendering algorithm than triangle rasterization found in most of todays graphics cards. Employing it in a real-time context might at first sound a bit surprising as ray tracing is mostly known for its application in high-quality off-line image generation, as e.g. in the motion picture industry. Infamous for its long rendering times, ray tracing was not used for interactive purposes until recently [13, 14, 19]. What makes it attractive for massive model rendering is not only its simplicity and robustness, but especially its versatility.","PeriodicalId":184610,"journal":{"name":"ACM SIGGRAPH 2007 courses","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Massive model visualization using realtime ray tracing\",\"authors\":\"Andreas Dietrich, P. Slusallek\",\"doi\":\"10.1145/1281500.1281570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last years real-time ray tracing has become an attractive alternative to rasterization based rendering, particularly for highly complex datasets including both surface and volume data. Ray tracing [7, 15] is a much more flexible rendering algorithm than triangle rasterization found in most of todays graphics cards. Employing it in a real-time context might at first sound a bit surprising as ray tracing is mostly known for its application in high-quality off-line image generation, as e.g. in the motion picture industry. Infamous for its long rendering times, ray tracing was not used for interactive purposes until recently [13, 14, 19]. What makes it attractive for massive model rendering is not only its simplicity and robustness, but especially its versatility.\",\"PeriodicalId\":184610,\"journal\":{\"name\":\"ACM SIGGRAPH 2007 courses\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2007 courses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1281500.1281570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2007 courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1281500.1281570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Massive model visualization using realtime ray tracing
In the last years real-time ray tracing has become an attractive alternative to rasterization based rendering, particularly for highly complex datasets including both surface and volume data. Ray tracing [7, 15] is a much more flexible rendering algorithm than triangle rasterization found in most of todays graphics cards. Employing it in a real-time context might at first sound a bit surprising as ray tracing is mostly known for its application in high-quality off-line image generation, as e.g. in the motion picture industry. Infamous for its long rendering times, ray tracing was not used for interactive purposes until recently [13, 14, 19]. What makes it attractive for massive model rendering is not only its simplicity and robustness, but especially its versatility.