{"title":"附近的阴影增强了对体积数据的感知","authors":"A. J. Stewart","doi":"10.1109/VISUAL.2003.1250394","DOIUrl":null,"url":null,"abstract":"This paper presents a shading model for volumetric data which enhances the perception of surfaces within the volume. The model incorporates uniform diffuse illumination, which arrives equally from all directions at each surface point in the volume. This illumination is attenuated by occlusions in the local vicinity of the surface point, resulting in shadows in depressions and crevices. Experiments by other authors have shown that perception of a surface is superior under uniform diffuse lighting, compared to illumination from point source lighting.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":"{\"title\":\"Vicinity shading for enhanced perception of volumetric data\",\"authors\":\"A. J. Stewart\",\"doi\":\"10.1109/VISUAL.2003.1250394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a shading model for volumetric data which enhances the perception of surfaces within the volume. The model incorporates uniform diffuse illumination, which arrives equally from all directions at each surface point in the volume. This illumination is attenuated by occlusions in the local vicinity of the surface point, resulting in shadows in depressions and crevices. Experiments by other authors have shown that perception of a surface is superior under uniform diffuse lighting, compared to illumination from point source lighting.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vicinity shading for enhanced perception of volumetric data
This paper presents a shading model for volumetric data which enhances the perception of surfaces within the volume. The model incorporates uniform diffuse illumination, which arrives equally from all directions at each surface point in the volume. This illumination is attenuated by occlusions in the local vicinity of the surface point, resulting in shadows in depressions and crevices. Experiments by other authors have shown that perception of a surface is superior under uniform diffuse lighting, compared to illumination from point source lighting.