滤波自举法的启发式改进

Stefano Colucci
{"title":"滤波自举法的启发式改进","authors":"Stefano Colucci","doi":"10.2139/ssrn.2328211","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce an evolution of estimation of ex-ante VaR of the Monte Carlo Filtered Bootstrap. We define the \"modus operandi\" borrowing from Bayesian statistic the idea of prior, likelihood and posterior distribution to have a mixture distribution of future returns. We perform three tests, Unconditional Coverage, Independence and Conditional Coverage, according to Christoffersen (1998). We present results on both VaR1% and VaR5% on a one day horizon for the following indices: Standard&Poors 500, Topix, Dax, MSCI United Kingdom, MSCI France, Italy Comit Globale, MSCI Canada, MSCI Emerging Markets, RJ/CRB. We also test the model on a ten equities portfolios and over four commodity sector indices. Our results show that the improved Filtered Bootstrap approach satisfies Conditional Coverage for all tested indices and porfolios while the standard Filtered Bootstrap has more rejection cases. We also test the models in a regulatory framework (rolling window of 250 daily observations) and discuss the advantages of each method in the risk management process.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Heuristic Improvement of a Filtered Bootstrap Approach\",\"authors\":\"Stefano Colucci\",\"doi\":\"10.2139/ssrn.2328211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce an evolution of estimation of ex-ante VaR of the Monte Carlo Filtered Bootstrap. We define the \\\"modus operandi\\\" borrowing from Bayesian statistic the idea of prior, likelihood and posterior distribution to have a mixture distribution of future returns. We perform three tests, Unconditional Coverage, Independence and Conditional Coverage, according to Christoffersen (1998). We present results on both VaR1% and VaR5% on a one day horizon for the following indices: Standard&Poors 500, Topix, Dax, MSCI United Kingdom, MSCI France, Italy Comit Globale, MSCI Canada, MSCI Emerging Markets, RJ/CRB. We also test the model on a ten equities portfolios and over four commodity sector indices. Our results show that the improved Filtered Bootstrap approach satisfies Conditional Coverage for all tested indices and porfolios while the standard Filtered Bootstrap has more rejection cases. We also test the models in a regulatory framework (rolling window of 250 daily observations) and discuss the advantages of each method in the risk management process.\",\"PeriodicalId\":203996,\"journal\":{\"name\":\"ERN: Value-at-Risk (Topic)\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Value-at-Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2328211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2328211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是介绍蒙特卡罗滤波自举法预估VaR的一种演化方法。我们借用贝叶斯统计的先验、似然和后验分布的思想来定义“操作方法”,以获得未来收益的混合分布。根据Christoffersen(1998),我们执行三个测试,无条件覆盖,独立性和条件覆盖。我们提供了以下指数在一天内1%和5% varr的结果:标准普尔500指数、东证指数、Dax指数、MSCI英国指数、MSCI法国指数、意大利全球委员会指数、MSCI加拿大指数、MSCI新兴市场指数、RJ/CRB指数。我们还在10个股票投资组合和超过4个大宗商品行业指数上测试了该模型。结果表明,改进的滤波Bootstrap方法满足所有测试指标和投资组合的条件覆盖,而标准滤波Bootstrap方法有更多的拒绝情况。我们还在监管框架(250个每日观察的滚动窗口)中测试了这些模型,并讨论了每种方法在风险管理过程中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Heuristic Improvement of a Filtered Bootstrap Approach
The purpose of this paper is to introduce an evolution of estimation of ex-ante VaR of the Monte Carlo Filtered Bootstrap. We define the "modus operandi" borrowing from Bayesian statistic the idea of prior, likelihood and posterior distribution to have a mixture distribution of future returns. We perform three tests, Unconditional Coverage, Independence and Conditional Coverage, according to Christoffersen (1998). We present results on both VaR1% and VaR5% on a one day horizon for the following indices: Standard&Poors 500, Topix, Dax, MSCI United Kingdom, MSCI France, Italy Comit Globale, MSCI Canada, MSCI Emerging Markets, RJ/CRB. We also test the model on a ten equities portfolios and over four commodity sector indices. Our results show that the improved Filtered Bootstrap approach satisfies Conditional Coverage for all tested indices and porfolios while the standard Filtered Bootstrap has more rejection cases. We also test the models in a regulatory framework (rolling window of 250 daily observations) and discuss the advantages of each method in the risk management process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precommitted Strategies with Initial-time and Intermediate-time VaR Constraints Success and Failure of the Financial Regulation on a Surplus-Driven Financial Company Interpreting Expectiles Beyond Value at Risk for Developing Markets La importancia de medir el riesgo de liquidez con aplicaciones inteligentes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1