{"title":"使用机器学习技术和图像处理的轨迹跟踪的汽车场景","authors":"Delia Moga, I. Filip","doi":"10.1109/SACI58269.2023.10158549","DOIUrl":null,"url":null,"abstract":"This paper presents a study on using innovative machine learning techniques that can be applied in automotive traffic scenarios to increase a vehicle’s level of autonomy. The overtaking traffic scenario is treated for predicting the vehicle trajectory when overtaking another vehicle and the data is obtained by image processing using a video camera. Two different methods are compared, first by using classic tracking methods and a Kalman filter (as an adaptive filter) and second by using a machine learning technique - Support Vector Machine. The present article uses as inputs the data received from the camera and focuses on tracking selected objects and estimating their position using mainly image processing in automotive scenarios. The main purpose of this work is to experiment and compare different tracking modes to determine those that have the best performances in terms of runtime, memory usage and prediction accuracy.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automotive Scenarios for Trajectory Tracking using Machine Learning Techniques and Image Processing\",\"authors\":\"Delia Moga, I. Filip\",\"doi\":\"10.1109/SACI58269.2023.10158549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study on using innovative machine learning techniques that can be applied in automotive traffic scenarios to increase a vehicle’s level of autonomy. The overtaking traffic scenario is treated for predicting the vehicle trajectory when overtaking another vehicle and the data is obtained by image processing using a video camera. Two different methods are compared, first by using classic tracking methods and a Kalman filter (as an adaptive filter) and second by using a machine learning technique - Support Vector Machine. The present article uses as inputs the data received from the camera and focuses on tracking selected objects and estimating their position using mainly image processing in automotive scenarios. The main purpose of this work is to experiment and compare different tracking modes to determine those that have the best performances in terms of runtime, memory usage and prediction accuracy.\",\"PeriodicalId\":339156,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI58269.2023.10158549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automotive Scenarios for Trajectory Tracking using Machine Learning Techniques and Image Processing
This paper presents a study on using innovative machine learning techniques that can be applied in automotive traffic scenarios to increase a vehicle’s level of autonomy. The overtaking traffic scenario is treated for predicting the vehicle trajectory when overtaking another vehicle and the data is obtained by image processing using a video camera. Two different methods are compared, first by using classic tracking methods and a Kalman filter (as an adaptive filter) and second by using a machine learning technique - Support Vector Machine. The present article uses as inputs the data received from the camera and focuses on tracking selected objects and estimating their position using mainly image processing in automotive scenarios. The main purpose of this work is to experiment and compare different tracking modes to determine those that have the best performances in terms of runtime, memory usage and prediction accuracy.