{"title":"频率控制储备的激活动力学要求规范","authors":"Philipp Maucher, H. Lens","doi":"10.1109/SmartGridComm51999.2021.9632295","DOIUrl":null,"url":null,"abstract":"The dynamic requirements for the provision of Frequency Containment Reserves (FCR) in Continental Europe are defined in the respective network codes (e.g. System Operation Guideline). However, this definition is precise only for a sudden frequency deviation of ±200 mHz. The requirements for smaller and/or slower frequency deviations are only described indirectly by referring to the case of ±200 mHz. As a result, different interpretations are possible, among which requiring activation dynamics that a) correspond to a linear time-invariant (LTI) system or b) exhibit a constant rate of change of power (RoCoP). This paper assesses the effects of these two different requirement interpretations on FCR providers and system stability by comparing their effect for different frequency deviations. It turns out that the RoCoP interpretation is disadvantageous, as it provides a slower response for large and fast frequency deviations and a fast response for small frequency deviations. Apart from Battery Energy Storage Systems (BESS), most FCR providers cannot perform FCR activation with a fixed RoCoP. In a further step, we consider the effects of the different requirement interpretations on system stability. For a constant RoCoP, it is assumed that the FCR is provided by BESS, while a conventional power plant model is used to implement LTI behavior. The comparison is performed both with model parameters corresponding to the current grid and with model parameters corresponding to a future grid. For each grid model, two scenarios are considered: The first scenario considers active power imbalances caused by load noise only (normal operation), while the second takes an additional significant generation outage into account (contingency). The results show that, in the load noise scenario, FCR activation with constant RoCoP reduces the frequency deviations slightly at the cost of higher total FCR provision and higher maximum FCR activation. However, in case of an additional generation outage, constant RoCoP activation results in a larger maximum frequency deviation, which means that the stability margin of the system is reduced.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the specification of requirements for the activation dynamics of Frequency Containment Reserves\",\"authors\":\"Philipp Maucher, H. Lens\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic requirements for the provision of Frequency Containment Reserves (FCR) in Continental Europe are defined in the respective network codes (e.g. System Operation Guideline). However, this definition is precise only for a sudden frequency deviation of ±200 mHz. The requirements for smaller and/or slower frequency deviations are only described indirectly by referring to the case of ±200 mHz. As a result, different interpretations are possible, among which requiring activation dynamics that a) correspond to a linear time-invariant (LTI) system or b) exhibit a constant rate of change of power (RoCoP). This paper assesses the effects of these two different requirement interpretations on FCR providers and system stability by comparing their effect for different frequency deviations. It turns out that the RoCoP interpretation is disadvantageous, as it provides a slower response for large and fast frequency deviations and a fast response for small frequency deviations. Apart from Battery Energy Storage Systems (BESS), most FCR providers cannot perform FCR activation with a fixed RoCoP. In a further step, we consider the effects of the different requirement interpretations on system stability. For a constant RoCoP, it is assumed that the FCR is provided by BESS, while a conventional power plant model is used to implement LTI behavior. The comparison is performed both with model parameters corresponding to the current grid and with model parameters corresponding to a future grid. For each grid model, two scenarios are considered: The first scenario considers active power imbalances caused by load noise only (normal operation), while the second takes an additional significant generation outage into account (contingency). The results show that, in the load noise scenario, FCR activation with constant RoCoP reduces the frequency deviations slightly at the cost of higher total FCR provision and higher maximum FCR activation. However, in case of an additional generation outage, constant RoCoP activation results in a larger maximum frequency deviation, which means that the stability margin of the system is reduced.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在欧洲大陆,提供频率遏制储备(FCR)的动态要求在各自的网络代码(例如系统操作指南)中进行了定义。然而,此定义仅适用于±200mhz的突然频率偏差。对于更小和/或更慢的频率偏差的要求,仅参考±200mhz的情况间接描述。因此,可能有不同的解释,其中需要激活动力学a)对应于线性时不变(LTI)系统或b)表现出恒定的功率变化率(RoCoP)。本文通过比较两种不同的需求解释在不同频率偏差下对FCR提供商和系统稳定性的影响,来评估这两种不同需求解释对FCR提供商和系统稳定性的影响。事实证明,RoCoP解释是不利的,因为它对大而快的频率偏差提供较慢的响应,而对小的频率偏差提供较快的响应。除了电池储能系统(BESS)之外,大多数FCR供应商都无法使用固定的RoCoP进行FCR激活。在进一步的步骤中,我们考虑了不同需求解释对系统稳定性的影响。对于恒定RoCoP,假设FCR由BESS提供,而采用传统电厂模型实现LTI行为。与当前网格对应的模型参数和与未来网格对应的模型参数进行比较。对于每个电网模型,考虑了两种情况:第一种情况只考虑由负载噪声(正常运行)引起的有功功率不平衡,而第二种情况考虑了额外的重大发电中断(应急)。结果表明,在负载噪声情况下,恒定RoCoP的FCR激活可以略微降低频率偏差,但代价是更高的总FCR供应和更高的最大FCR激活。然而,在额外的发电中断情况下,持续激活RoCoP会导致更大的最大频率偏差,这意味着系统的稳定裕度会降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the specification of requirements for the activation dynamics of Frequency Containment Reserves
The dynamic requirements for the provision of Frequency Containment Reserves (FCR) in Continental Europe are defined in the respective network codes (e.g. System Operation Guideline). However, this definition is precise only for a sudden frequency deviation of ±200 mHz. The requirements for smaller and/or slower frequency deviations are only described indirectly by referring to the case of ±200 mHz. As a result, different interpretations are possible, among which requiring activation dynamics that a) correspond to a linear time-invariant (LTI) system or b) exhibit a constant rate of change of power (RoCoP). This paper assesses the effects of these two different requirement interpretations on FCR providers and system stability by comparing their effect for different frequency deviations. It turns out that the RoCoP interpretation is disadvantageous, as it provides a slower response for large and fast frequency deviations and a fast response for small frequency deviations. Apart from Battery Energy Storage Systems (BESS), most FCR providers cannot perform FCR activation with a fixed RoCoP. In a further step, we consider the effects of the different requirement interpretations on system stability. For a constant RoCoP, it is assumed that the FCR is provided by BESS, while a conventional power plant model is used to implement LTI behavior. The comparison is performed both with model parameters corresponding to the current grid and with model parameters corresponding to a future grid. For each grid model, two scenarios are considered: The first scenario considers active power imbalances caused by load noise only (normal operation), while the second takes an additional significant generation outage into account (contingency). The results show that, in the load noise scenario, FCR activation with constant RoCoP reduces the frequency deviations slightly at the cost of higher total FCR provision and higher maximum FCR activation. However, in case of an additional generation outage, constant RoCoP activation results in a larger maximum frequency deviation, which means that the stability margin of the system is reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1