加入递归神经网络,考虑每个说话人的语音信息,生成多回合对话

Takamune Onishi, Hiromitsu Shiina
{"title":"加入递归神经网络,考虑每个说话人的语音信息,生成多回合对话","authors":"Takamune Onishi, Hiromitsu Shiina","doi":"10.1109/iiai-aai53430.2021.00093","DOIUrl":null,"url":null,"abstract":"A dialogue generation method using neural networks (NNs) has been proposed. The HRED model is a model for multi-turn dialogues by creating a hierarchical structure by layering several encoder-decoder models. Furthermore, the VHRED model generates a variety of responses by adding latent variables. However, since these models do not consider the user who has spoken, they generate inconsistent responses in the same dialogue, which is a problem. In this study, instead of using the user's embedding vector, we add a user recurrent NN (User-RNN) to retain the speech information of each speaker and generate consistent responses.","PeriodicalId":414070,"journal":{"name":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-turn dialogue generation considering speech information of each speaker by adding recurrent neural networks\",\"authors\":\"Takamune Onishi, Hiromitsu Shiina\",\"doi\":\"10.1109/iiai-aai53430.2021.00093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dialogue generation method using neural networks (NNs) has been proposed. The HRED model is a model for multi-turn dialogues by creating a hierarchical structure by layering several encoder-decoder models. Furthermore, the VHRED model generates a variety of responses by adding latent variables. However, since these models do not consider the user who has spoken, they generate inconsistent responses in the same dialogue, which is a problem. In this study, instead of using the user's embedding vector, we add a user recurrent NN (User-RNN) to retain the speech information of each speaker and generate consistent responses.\",\"PeriodicalId\":414070,\"journal\":{\"name\":\"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iiai-aai53430.2021.00093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iiai-aai53430.2021.00093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于神经网络的对话生成方法。HRED模型是一个多回合对话的模型,它通过分层几个编码器-解码器模型来创建一个分层结构。此外,VHRED模型通过添加潜在变量产生多种响应。然而,由于这些模型没有考虑说话的用户,因此它们在相同的对话中生成不一致的响应,这是一个问题。在本研究中,我们不是使用用户的嵌入向量,而是添加一个用户循环神经网络(user - rnn)来保留每个说话者的语音信息并生成一致的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-turn dialogue generation considering speech information of each speaker by adding recurrent neural networks
A dialogue generation method using neural networks (NNs) has been proposed. The HRED model is a model for multi-turn dialogues by creating a hierarchical structure by layering several encoder-decoder models. Furthermore, the VHRED model generates a variety of responses by adding latent variables. However, since these models do not consider the user who has spoken, they generate inconsistent responses in the same dialogue, which is a problem. In this study, instead of using the user's embedding vector, we add a user recurrent NN (User-RNN) to retain the speech information of each speaker and generate consistent responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An analysis of preferences of convention attendees in the time of Covid-19 pandemic Visual Effects for Real Time Ocean Water Rendering Analysis of commands of Telnet logs illegally connected to IoT devices Design, modeling and parameters identification of rotary-type double inverted pendulum An Improved NSGA-II for Service Provider Composition in Knowledge-Intensive Crowdsourcing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1