多回合对话生成的层次自关注网络

Yawei Kong, Lu Zhang, Can Ma, Cong Cao
{"title":"多回合对话生成的层次自关注网络","authors":"Yawei Kong, Lu Zhang, Can Ma, Cong Cao","doi":"10.1109/ICASSP39728.2021.9413753","DOIUrl":null,"url":null,"abstract":"In the multi-turn dialogue system, response generation is not only related to the sentences in context but also relies on the words in each utterance. Although there are lots of methods that pay attention to model words and utterances, there still exist problems such as tending to generate common responses. In this paper, we propose a hierarchical self-attention network, named HSAN, which attends to the important words and utterances in context simultaneously. Firstly, we use the hierarchical encoder to update the word and utterance representations with their position information respectively. Secondly, the response representations are updated by the mask self-attention module in the decoder. Finally, the relevance between utterances and response is computed by another self-attention module and used for the next response decoding process. In terms of automatic metrics and human judgements, experimental results show that HSAN significantly outperforms all baselines on two common public datasets.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"HSAN: A Hierarchical Self-Attention Network for Multi-Turn Dialogue Generation\",\"authors\":\"Yawei Kong, Lu Zhang, Can Ma, Cong Cao\",\"doi\":\"10.1109/ICASSP39728.2021.9413753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the multi-turn dialogue system, response generation is not only related to the sentences in context but also relies on the words in each utterance. Although there are lots of methods that pay attention to model words and utterances, there still exist problems such as tending to generate common responses. In this paper, we propose a hierarchical self-attention network, named HSAN, which attends to the important words and utterances in context simultaneously. Firstly, we use the hierarchical encoder to update the word and utterance representations with their position information respectively. Secondly, the response representations are updated by the mask self-attention module in the decoder. Finally, the relevance between utterances and response is computed by another self-attention module and used for the next response decoding process. In terms of automatic metrics and human judgements, experimental results show that HSAN significantly outperforms all baselines on two common public datasets.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9413753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在多回合对话系统中,反应的产生不仅与语境中的句子有关,而且依赖于每个话语中的单词。虽然有很多方法关注模型词和话语,但仍然存在容易产生共同反应等问题。在本文中,我们提出了一个分层自注意网络HSAN,它同时关注语境中的重要词语和话语。首先,我们使用分层编码器分别用位置信息更新单词和话语表示。其次,由解码器中的掩码自关注模块更新响应表示。最后,话语和应答之间的相关性由另一个自注意模块计算,并用于下一个应答解码过程。在自动度量和人工判断方面,实验结果表明,HSAN在两个公共数据集上显著优于所有基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HSAN: A Hierarchical Self-Attention Network for Multi-Turn Dialogue Generation
In the multi-turn dialogue system, response generation is not only related to the sentences in context but also relies on the words in each utterance. Although there are lots of methods that pay attention to model words and utterances, there still exist problems such as tending to generate common responses. In this paper, we propose a hierarchical self-attention network, named HSAN, which attends to the important words and utterances in context simultaneously. Firstly, we use the hierarchical encoder to update the word and utterance representations with their position information respectively. Secondly, the response representations are updated by the mask self-attention module in the decoder. Finally, the relevance between utterances and response is computed by another self-attention module and used for the next response decoding process. In terms of automatic metrics and human judgements, experimental results show that HSAN significantly outperforms all baselines on two common public datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers Topic-Aware Dialogue Generation with Two-Hop Based Graph Attention On The Accuracy Limit of Joint Time-Delay/Doppler/Acceleration Estimation with a Band-Limited Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1