通过顶点最小化和网格约束从图像数据中获得空间高效轮廓

John D. Hobby
{"title":"通过顶点最小化和网格约束从图像数据中获得空间高效轮廓","authors":"John D. Hobby","doi":"10.1006/gmip.1997.0419","DOIUrl":null,"url":null,"abstract":"<div><p>When processing shape information derived from a noisy source such as a digital scanner, it is often useful to construct polygonal or curved outlines that match the input to within a specified tolerance and maximize some intuitive notions of smoothness, simplicity, and best fit. The outline description should also be concise enough to be competitive with binary image compression schemes. Otherwise, there will be a strong temptation to lose the advantages of the outline representation by converting back to a binary image format. This paper proposes a two-stage pipeline that provides separate control over the twin goals of smoothness and conciseness: the first stage produces a specification for a set of closed curves that minimize the number of inflections subject to a specified error bound; the second stage produces polygonal outlines that obey the specifications, have vertices on a given grid, and have nearly the minimum possible number of vertices. Both algorithms are reasonably fast in practice, and can be implemented largely with low-precision integer arithmetic.</p></div>","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"59 2","pages":"Pages 73-88"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/gmip.1997.0419","citationCount":"7","resultStr":"{\"title\":\"Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints\",\"authors\":\"John D. Hobby\",\"doi\":\"10.1006/gmip.1997.0419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When processing shape information derived from a noisy source such as a digital scanner, it is often useful to construct polygonal or curved outlines that match the input to within a specified tolerance and maximize some intuitive notions of smoothness, simplicity, and best fit. The outline description should also be concise enough to be competitive with binary image compression schemes. Otherwise, there will be a strong temptation to lose the advantages of the outline representation by converting back to a binary image format. This paper proposes a two-stage pipeline that provides separate control over the twin goals of smoothness and conciseness: the first stage produces a specification for a set of closed curves that minimize the number of inflections subject to a specified error bound; the second stage produces polygonal outlines that obey the specifications, have vertices on a given grid, and have nearly the minimum possible number of vertices. Both algorithms are reasonably fast in practice, and can be implemented largely with low-precision integer arithmetic.</p></div>\",\"PeriodicalId\":100591,\"journal\":{\"name\":\"Graphical Models and Image Processing\",\"volume\":\"59 2\",\"pages\":\"Pages 73-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/gmip.1997.0419\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077316997904196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077316997904196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

当处理来自噪声源(如数字扫描仪)的形状信息时,构造与输入匹配的多边形或弯曲轮廓在指定公差内并最大化一些平滑、简单和最佳拟合的直观概念通常是有用的。轮廓描述也应该足够简洁,以与二值图像压缩方案竞争。否则,将很容易由于转换回二值图像格式而失去轮廓表示的优点。本文提出了一个两阶段的流水线,它提供了对平滑和简洁两个目标的单独控制:第一阶段产生一组封闭曲线的规范,这些曲线在指定的误差范围内最小化弯曲的数量;第二阶段生成符合规范的多边形轮廓,在给定网格上具有顶点,并且具有几乎尽可能少的顶点数量。这两种算法在实践中都相当快,并且可以通过低精度的整数运算来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints

When processing shape information derived from a noisy source such as a digital scanner, it is often useful to construct polygonal or curved outlines that match the input to within a specified tolerance and maximize some intuitive notions of smoothness, simplicity, and best fit. The outline description should also be concise enough to be competitive with binary image compression schemes. Otherwise, there will be a strong temptation to lose the advantages of the outline representation by converting back to a binary image format. This paper proposes a two-stage pipeline that provides separate control over the twin goals of smoothness and conciseness: the first stage produces a specification for a set of closed curves that minimize the number of inflections subject to a specified error bound; the second stage produces polygonal outlines that obey the specifications, have vertices on a given grid, and have nearly the minimum possible number of vertices. Both algorithms are reasonably fast in practice, and can be implemented largely with low-precision integer arithmetic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ERRATUM Two-Dimensional Direction-Based Interpolation with Local Centered Moments On Computing Contact Configurations of a Curved Chain Unification of Distance and Volume Optimization in Surface Simplification REVIEWER ACKNOWLEDGMENT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1