基于组合泰勒模型的验证集成

Kristjan Liiva, Paul B. Jackson, G. Passmore, C. Wintersteiger
{"title":"基于组合泰勒模型的验证集成","authors":"Kristjan Liiva, Paul B. Jackson, G. Passmore, C. Wintersteiger","doi":"10.1109/SYNASC.2018.00020","DOIUrl":null,"url":null,"abstract":"We present a compositional validated integration method based on Taylor models. Our method combines solutions for lower dimensional subsystems into solutions for a higher dimensional composite system, rather than attempting to solve the higher dimensional system directly. We have implemented the method in an extension of the Flow* tool. Our preliminary results are promising, suggesting gains for some biological systems with nontrivial compositional structure.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositional Taylor Model Based Validated Integration\",\"authors\":\"Kristjan Liiva, Paul B. Jackson, G. Passmore, C. Wintersteiger\",\"doi\":\"10.1109/SYNASC.2018.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a compositional validated integration method based on Taylor models. Our method combines solutions for lower dimensional subsystems into solutions for a higher dimensional composite system, rather than attempting to solve the higher dimensional system directly. We have implemented the method in an extension of the Flow* tool. Our preliminary results are promising, suggesting gains for some biological systems with nontrivial compositional structure.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于泰勒模型的组合验证积分方法。我们的方法将低维子系统的解合并为高维复合系统的解,而不是试图直接求解高维系统。我们已经在Flow*工具的扩展中实现了该方法。我们的初步结果是有希望的,表明了一些具有非平凡组成结构的生物系统的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compositional Taylor Model Based Validated Integration
We present a compositional validated integration method based on Taylor models. Our method combines solutions for lower dimensional subsystems into solutions for a higher dimensional composite system, rather than attempting to solve the higher dimensional system directly. We have implemented the method in an extension of the Flow* tool. Our preliminary results are promising, suggesting gains for some biological systems with nontrivial compositional structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1