时空数据可视化平台:数据密集型计算框架

Danhuai Guo, Yi Du
{"title":"时空数据可视化平台:数据密集型计算框架","authors":"Danhuai Guo, Yi Du","doi":"10.1109/GEOINFORMATICS.2015.7378668","DOIUrl":null,"url":null,"abstract":"Data visualization, as an intuitive approach to help people realize data and knowledge discovering, has been developed with diverse perspectives and objectives, and they may render different analysis results even with the same application case or dataset treated. With the explosive increase of data volume and data dimension, the performance of most of the existing spatio-temporal information visualization toolkits decreases sharply in capacity and efficiency. In this paper, we present a visual analytics platform in data intensive computation environment that supports large-scale spatio-temporal data. By redefining task model, data model, and visual mapping strategies, this platform supports processing and visualizing many kinds of Big Data with spatio-temporal attributes. The processing and visualizing can be done in seconds by distributed storage, data reorganization, distributed query, spatial indices, and segmented fetch, even though it has a terabyte of data. In the experimental implementation, the taxi trajectory dataset with 1TB volume and four typical spatio-temporal queries are used to testify our platform's effectiveness and efficiency.","PeriodicalId":371399,"journal":{"name":"2015 23rd International Conference on Geoinformatics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A visualization platform for spatio-temporal data: A data intensive computation framework\",\"authors\":\"Danhuai Guo, Yi Du\",\"doi\":\"10.1109/GEOINFORMATICS.2015.7378668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data visualization, as an intuitive approach to help people realize data and knowledge discovering, has been developed with diverse perspectives and objectives, and they may render different analysis results even with the same application case or dataset treated. With the explosive increase of data volume and data dimension, the performance of most of the existing spatio-temporal information visualization toolkits decreases sharply in capacity and efficiency. In this paper, we present a visual analytics platform in data intensive computation environment that supports large-scale spatio-temporal data. By redefining task model, data model, and visual mapping strategies, this platform supports processing and visualizing many kinds of Big Data with spatio-temporal attributes. The processing and visualizing can be done in seconds by distributed storage, data reorganization, distributed query, spatial indices, and segmented fetch, even though it has a terabyte of data. In the experimental implementation, the taxi trajectory dataset with 1TB volume and four typical spatio-temporal queries are used to testify our platform's effectiveness and efficiency.\",\"PeriodicalId\":371399,\"journal\":{\"name\":\"2015 23rd International Conference on Geoinformatics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd International Conference on Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEOINFORMATICS.2015.7378668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2015.7378668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

数据可视化作为一种帮助人们实现数据和知识发现的直观方法,其发展具有不同的视角和目标,即使处理相同的应用案例或数据集,它们也可能呈现不同的分析结果。随着数据量和数据维数的爆炸式增长,现有的大多数时空信息可视化工具箱的性能在容量和效率上急剧下降。本文提出了一种支持大规模时空数据的数据密集型计算环境下的可视化分析平台。该平台通过重新定义任务模型、数据模型和可视化映射策略,支持多种具有时空属性的大数据处理和可视化。处理和可视化可以通过分布式存储、数据重组、分布式查询、空间索引和分段获取在几秒钟内完成,即使它有一个tb的数据。在实验实现中,使用1TB的出租车轨迹数据集和4个典型的时空查询来验证我们平台的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A visualization platform for spatio-temporal data: A data intensive computation framework
Data visualization, as an intuitive approach to help people realize data and knowledge discovering, has been developed with diverse perspectives and objectives, and they may render different analysis results even with the same application case or dataset treated. With the explosive increase of data volume and data dimension, the performance of most of the existing spatio-temporal information visualization toolkits decreases sharply in capacity and efficiency. In this paper, we present a visual analytics platform in data intensive computation environment that supports large-scale spatio-temporal data. By redefining task model, data model, and visual mapping strategies, this platform supports processing and visualizing many kinds of Big Data with spatio-temporal attributes. The processing and visualizing can be done in seconds by distributed storage, data reorganization, distributed query, spatial indices, and segmented fetch, even though it has a terabyte of data. In the experimental implementation, the taxi trajectory dataset with 1TB volume and four typical spatio-temporal queries are used to testify our platform's effectiveness and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A conceptual framework for the design of geo-dynamics visualization Research and application of Jinggangshan geological disaster prevention system based on wireless sensor network system Random forests methodology to analyze landslide susceptibility: An example in Lushan earthquake Identification of the Yancheng region water quality using GIS and fuzzy synthetic evaluation approach The progress in the research of flood damage loss assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1