基于仿真的粒子物理推理方法

J. Brehmer, Kyle Cranmer
{"title":"基于仿真的粒子物理推理方法","authors":"J. Brehmer, Kyle Cranmer","doi":"10.1142/9789811234026_0016","DOIUrl":null,"url":null,"abstract":"Our predictions for particle physics processes are realized in a chain of complex simulators. They allow us to generate high-fidelity simulated data, but they are not well-suited for inference on the theory parameters with observed data. We explain why the likelihood function of high-dimensional LHC data cannot be explicitly evaluated, why this matters for data analysis, and reframe what the field has traditionally done to circumvent this problem. We then review new simulation-based inference methods that let us directly analyze high-dimensional data by combining machine learning techniques and information from the simulator. Initial studies indicate that these techniques have the potential to substantially improve the precision of LHC measurements. Finally, we discuss probabilistic programming, an emerging paradigm that lets us extend inference to the latent process of the simulator.","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Simulation-Based Inference Methods for Particle Physics\",\"authors\":\"J. Brehmer, Kyle Cranmer\",\"doi\":\"10.1142/9789811234026_0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our predictions for particle physics processes are realized in a chain of complex simulators. They allow us to generate high-fidelity simulated data, but they are not well-suited for inference on the theory parameters with observed data. We explain why the likelihood function of high-dimensional LHC data cannot be explicitly evaluated, why this matters for data analysis, and reframe what the field has traditionally done to circumvent this problem. We then review new simulation-based inference methods that let us directly analyze high-dimensional data by combining machine learning techniques and information from the simulator. Initial studies indicate that these techniques have the potential to substantially improve the precision of LHC measurements. Finally, we discuss probabilistic programming, an emerging paradigm that lets us extend inference to the latent process of the simulator.\",\"PeriodicalId\":416365,\"journal\":{\"name\":\"Artificial Intelligence for High Energy Physics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence for High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811234026_0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence for High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811234026_0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们对粒子物理过程的预测是在一系列复杂的模拟器中实现的。它们允许我们生成高保真的模拟数据,但它们不太适合用观测数据对理论参数进行推断。我们解释了为什么高维LHC数据的似然函数不能被明确地评估,为什么这对数据分析很重要,并重新定义了该领域传统上为规避这一问题所做的工作。然后,我们回顾了新的基于仿真的推理方法,这些方法使我们能够通过结合机器学习技术和来自模拟器的信息直接分析高维数据。初步研究表明,这些技术有可能大大提高大型强子对撞机测量的精度。最后,我们讨论了概率编程,这是一种新兴的范式,可以让我们将推理扩展到模拟器的潜在过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation-Based Inference Methods for Particle Physics
Our predictions for particle physics processes are realized in a chain of complex simulators. They allow us to generate high-fidelity simulated data, but they are not well-suited for inference on the theory parameters with observed data. We explain why the likelihood function of high-dimensional LHC data cannot be explicitly evaluated, why this matters for data analysis, and reframe what the field has traditionally done to circumvent this problem. We then review new simulation-based inference methods that let us directly analyze high-dimensional data by combining machine learning techniques and information from the simulator. Initial studies indicate that these techniques have the potential to substantially improve the precision of LHC measurements. Finally, we discuss probabilistic programming, an emerging paradigm that lets us extend inference to the latent process of the simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering FRONT MATTER Machine Learning for Triggering and Data Acquisition Generative Models for Fast Simulation End-to-End Analyses Using Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1