{"title":"冷凝器温度对ORC能量效率和火用效率的影响","authors":"Dhae Hussain, Ali A. F. Al-Hamadani, Huda Ridha","doi":"10.31185/ejuow.vol10.iss3.313","DOIUrl":null,"url":null,"abstract":"From low-grade heat sources, the organic Rankine cycle may be exploited to create power. The thermal efficiency of the organic Rankine cycle is affected by the value of the lowest cycle temperature, which is the condensation temperature. This study looks at the effect of condensation temperature on the efficiency of energy systems that use organic Rankine cycles. At a condensing temperature of 10–20 °C, the ORC thermal efficiency is calculated. R134a working fluid was used in the study. The expander's power output was boosted to 0.09765 kW by decreasing the condensing temperature. Additionally, the thermal efficiency has been enhanced by 3.826 %. At a minimum temperature of 10 °C, the expander speed at 595 rpm. Exergy efficiency has an 18.26 %. is shown that lowering the condensing temperature increased the ORC system's thermal efficiency and energy output.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Condenser Temperature on the Energy and Exergy Efficiencies of the ORC\",\"authors\":\"Dhae Hussain, Ali A. F. Al-Hamadani, Huda Ridha\",\"doi\":\"10.31185/ejuow.vol10.iss3.313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From low-grade heat sources, the organic Rankine cycle may be exploited to create power. The thermal efficiency of the organic Rankine cycle is affected by the value of the lowest cycle temperature, which is the condensation temperature. This study looks at the effect of condensation temperature on the efficiency of energy systems that use organic Rankine cycles. At a condensing temperature of 10–20 °C, the ORC thermal efficiency is calculated. R134a working fluid was used in the study. The expander's power output was boosted to 0.09765 kW by decreasing the condensing temperature. Additionally, the thermal efficiency has been enhanced by 3.826 %. At a minimum temperature of 10 °C, the expander speed at 595 rpm. Exergy efficiency has an 18.26 %. is shown that lowering the condensing temperature increased the ORC system's thermal efficiency and energy output.\",\"PeriodicalId\":184256,\"journal\":{\"name\":\"Wasit Journal of Engineering Sciences\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/ejuow.vol10.iss3.313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/ejuow.vol10.iss3.313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Influence of Condenser Temperature on the Energy and Exergy Efficiencies of the ORC
From low-grade heat sources, the organic Rankine cycle may be exploited to create power. The thermal efficiency of the organic Rankine cycle is affected by the value of the lowest cycle temperature, which is the condensation temperature. This study looks at the effect of condensation temperature on the efficiency of energy systems that use organic Rankine cycles. At a condensing temperature of 10–20 °C, the ORC thermal efficiency is calculated. R134a working fluid was used in the study. The expander's power output was boosted to 0.09765 kW by decreasing the condensing temperature. Additionally, the thermal efficiency has been enhanced by 3.826 %. At a minimum temperature of 10 °C, the expander speed at 595 rpm. Exergy efficiency has an 18.26 %. is shown that lowering the condensing temperature increased the ORC system's thermal efficiency and energy output.