基于异构加权投票的根本原因分析集成(HWVE)

B. Selvam, S. Ravimaran, S. Sheba
{"title":"基于异构加权投票的根本原因分析集成(HWVE)","authors":"B. Selvam, S. Ravimaran, S. Sheba","doi":"10.4018/jitr.2020100105","DOIUrl":null,"url":null,"abstract":"Root-cause analysis has been one of the major requirements of the current information-rich world due to the huge number of opinions available online. This paper presents a heterogeneous weighted voting-based ensemble (HWVE) model for root-cause analysis. The proposed model is composed of an aspect extraction and filtering module, a model-based sentiment identification module, and a ranking module. Domain-based aspect ontologies are created using the available training data and is used for categorization. The input data is passed to the HWVE model for opinion identification and is in-parallel passed to the significance identification phase for aspect identification. The identified aspects are combined with their corresponding sentiments and ranked based on their ontological occurrence levels to provide the final categorized root-causes. Experiments were performed with the five-product dataset, and comparisons were performed with recent models. Results indicate that the proposed model exhibits improved performances of 5%-13% in terms of F-measure when compared to other models.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Weighted Voting-Based Ensemble (HWVE) for Root-Cause Analysis\",\"authors\":\"B. Selvam, S. Ravimaran, S. Sheba\",\"doi\":\"10.4018/jitr.2020100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Root-cause analysis has been one of the major requirements of the current information-rich world due to the huge number of opinions available online. This paper presents a heterogeneous weighted voting-based ensemble (HWVE) model for root-cause analysis. The proposed model is composed of an aspect extraction and filtering module, a model-based sentiment identification module, and a ranking module. Domain-based aspect ontologies are created using the available training data and is used for categorization. The input data is passed to the HWVE model for opinion identification and is in-parallel passed to the significance identification phase for aspect identification. The identified aspects are combined with their corresponding sentiments and ranked based on their ontological occurrence levels to provide the final categorized root-causes. Experiments were performed with the five-product dataset, and comparisons were performed with recent models. Results indicate that the proposed model exhibits improved performances of 5%-13% in terms of F-measure when compared to other models.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.2020100105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.2020100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于网上有大量的意见,根本原因分析已经成为当前信息丰富世界的主要需求之一。本文提出了一种基于异构加权投票的集成(HWVE)根本原因分析模型。该模型由方面提取和过滤模块、基于模型的情感识别模块和排序模块组成。基于领域的方面本体是使用可用的训练数据创建的,并用于分类。输入数据被传递给HWVE模型以进行意见识别,并并行地传递给重要性识别阶段以进行方面识别。将已识别的方面与其相应的情绪结合起来,并根据其本体论发生级别进行排序,以提供最终分类的根本原因。实验用五种产品数据集进行,并与最近的模型进行了比较。结果表明,与其他模型相比,所提出的模型在F-measure方面的性能提高了5%-13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous Weighted Voting-Based Ensemble (HWVE) for Root-Cause Analysis
Root-cause analysis has been one of the major requirements of the current information-rich world due to the huge number of opinions available online. This paper presents a heterogeneous weighted voting-based ensemble (HWVE) model for root-cause analysis. The proposed model is composed of an aspect extraction and filtering module, a model-based sentiment identification module, and a ranking module. Domain-based aspect ontologies are created using the available training data and is used for categorization. The input data is passed to the HWVE model for opinion identification and is in-parallel passed to the significance identification phase for aspect identification. The identified aspects are combined with their corresponding sentiments and ranked based on their ontological occurrence levels to provide the final categorized root-causes. Experiments were performed with the five-product dataset, and comparisons were performed with recent models. Results indicate that the proposed model exhibits improved performances of 5%-13% in terms of F-measure when compared to other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking Serverless Computing: Performance and Usability MAC Protocol Analysis for Wireless Sensor Networks Prognostic Model for the Risk of Coronavirus Disease (COVID-19) Using Fuzzy Logic Modeling Evaluation of Teachers' Innovation and Entrepreneurship Ability in Universities Based on Artificial Neural Networks Cluster-Based Vehicle Routing on Road Segments in Dematerialised Traffic Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1