基于替代进化算法的CNN优化乳腺癌红外图像检测

Caroline B. Gonçalves, Jefferson R. Souza, H. Fernandes
{"title":"基于替代进化算法的CNN优化乳腺癌红外图像检测","authors":"Caroline B. Gonçalves, Jefferson R. Souza, H. Fernandes","doi":"10.1109/CBMS55023.2022.00022","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have shown great potential in different real word application. Defining a suitable CNN architecture is vital for obtaining good performance. In this work we propose a random forest surrogate combined with two bio-inspired optimization algorithm, genetic algorithms (GA) and particle swarm optimization (PSO) used to find good CNN fully connected layer architecture and hyperparameters for three state of the art CNNs: VGG-16, Resnet-50 and Densenet-201. The proposed model is used to classify breast thermography images from the DMR-IR database in order to find whether or not the patient has cancer. The proposed model improved F1-score from 0.92 to 1 for the Densenet using the GA and also Resnet from 0.85 of F1-score to 0.92 using the PSO. Moreover, the surrogate model also helped reducing training time.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CNN optimization using surrogate evolutionary algorithm for breast cancer detection using infrared images\",\"authors\":\"Caroline B. Gonçalves, Jefferson R. Souza, H. Fernandes\",\"doi\":\"10.1109/CBMS55023.2022.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have shown great potential in different real word application. Defining a suitable CNN architecture is vital for obtaining good performance. In this work we propose a random forest surrogate combined with two bio-inspired optimization algorithm, genetic algorithms (GA) and particle swarm optimization (PSO) used to find good CNN fully connected layer architecture and hyperparameters for three state of the art CNNs: VGG-16, Resnet-50 and Densenet-201. The proposed model is used to classify breast thermography images from the DMR-IR database in order to find whether or not the patient has cancer. The proposed model improved F1-score from 0.92 to 1 for the Densenet using the GA and also Resnet from 0.85 of F1-score to 0.92 using the PSO. Moreover, the surrogate model also helped reducing training time.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

卷积神经网络(cnn)在各种现实世界的应用中显示出巨大的潜力。定义合适的CNN架构对于获得良好的性能至关重要。在这项工作中,我们提出了一种随机森林代理,结合两种生物启发优化算法,遗传算法(GA)和粒子群优化(PSO),用于为三种最先进的CNN: VGG-16, Resnet-50和Densenet-201找到良好的CNN全连接层架构和超参数。该模型用于从DMR-IR数据库中对乳房热成像图像进行分类,以发现患者是否患有癌症。该模型使用GA将Densenet的f1得分从0.92提高到1,使用PSO将Resnet的f1得分从0.85提高到0.92。此外,代理模型还有助于减少训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN optimization using surrogate evolutionary algorithm for breast cancer detection using infrared images
Convolutional neural networks (CNNs) have shown great potential in different real word application. Defining a suitable CNN architecture is vital for obtaining good performance. In this work we propose a random forest surrogate combined with two bio-inspired optimization algorithm, genetic algorithms (GA) and particle swarm optimization (PSO) used to find good CNN fully connected layer architecture and hyperparameters for three state of the art CNNs: VGG-16, Resnet-50 and Densenet-201. The proposed model is used to classify breast thermography images from the DMR-IR database in order to find whether or not the patient has cancer. The proposed model improved F1-score from 0.92 to 1 for the Densenet using the GA and also Resnet from 0.85 of F1-score to 0.92 using the PSO. Moreover, the surrogate model also helped reducing training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1