根据出租车位置的痕迹推断人类的移动模式

R. Ganti, M. Srivatsa, A. Ranganathan, Jiawei Han
{"title":"根据出租车位置的痕迹推断人类的移动模式","authors":"R. Ganti, M. Srivatsa, A. Ranganathan, Jiawei Han","doi":"10.1145/2493432.2493466","DOIUrl":null,"url":null,"abstract":"Taxicabs equipped with real-time location sensing devices are increasingly becoming popular. Such location traces are a rich source of information and can be used for congestion pricing, taxicab placement, and improved city planning. An important problem to enable these application is to identify human mobility patterns from the taxicab traces, which translates to being able to identify pickup and dropoff points for a particular trip. In this paper, we show that while past approaches are effective in detecting hotspots using location traces, they are largely ineffective in identifying trips (pairs of pickup and dropoff points). We propose the use of a graph theory concept - stretch factor in a novel manner to identify trip(s) made by a taxicab and show that a Hidden Markov Model based algorithm can identify trips (using real datasets from taxicab deployments in Shanghai and partially simulated datasets from Stockholm) with precision and recall of 90-94%, a significant improvement over past approaches that result in a precision and recall of about 50-60%.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"35 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Inferring human mobility patterns from taxicab location traces\",\"authors\":\"R. Ganti, M. Srivatsa, A. Ranganathan, Jiawei Han\",\"doi\":\"10.1145/2493432.2493466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taxicabs equipped with real-time location sensing devices are increasingly becoming popular. Such location traces are a rich source of information and can be used for congestion pricing, taxicab placement, and improved city planning. An important problem to enable these application is to identify human mobility patterns from the taxicab traces, which translates to being able to identify pickup and dropoff points for a particular trip. In this paper, we show that while past approaches are effective in detecting hotspots using location traces, they are largely ineffective in identifying trips (pairs of pickup and dropoff points). We propose the use of a graph theory concept - stretch factor in a novel manner to identify trip(s) made by a taxicab and show that a Hidden Markov Model based algorithm can identify trips (using real datasets from taxicab deployments in Shanghai and partially simulated datasets from Stockholm) with precision and recall of 90-94%, a significant improvement over past approaches that result in a precision and recall of about 50-60%.\",\"PeriodicalId\":262104,\"journal\":{\"name\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"volume\":\"35 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493432.2493466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493432.2493466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

配备实时位置感应装置的出租车越来越受欢迎。这样的位置轨迹是一个丰富的信息来源,可以用于拥堵收费、出租车安置和改进的城市规划。启用这些应用程序的一个重要问题是从出租车痕迹中识别人类的移动模式,这意味着能够识别特定行程的接送点。在本文中,我们表明,虽然过去的方法在使用位置跟踪检测热点方面是有效的,但它们在识别行程(对取车点和落车点)方面基本上是无效的。我们提出以一种新颖的方式使用图论概念-拉伸因子来识别出租车的行程,并表明基于隐马尔可夫模型的算法可以识别行程(使用来自上海出租车部署的真实数据集和来自斯德哥尔摩的部分模拟数据集),精度和召回率为90-94%,比过去的方法有了显着的改进,导致精度和召回率约为50-60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inferring human mobility patterns from taxicab location traces
Taxicabs equipped with real-time location sensing devices are increasingly becoming popular. Such location traces are a rich source of information and can be used for congestion pricing, taxicab placement, and improved city planning. An important problem to enable these application is to identify human mobility patterns from the taxicab traces, which translates to being able to identify pickup and dropoff points for a particular trip. In this paper, we show that while past approaches are effective in detecting hotspots using location traces, they are largely ineffective in identifying trips (pairs of pickup and dropoff points). We propose the use of a graph theory concept - stretch factor in a novel manner to identify trip(s) made by a taxicab and show that a Hidden Markov Model based algorithm can identify trips (using real datasets from taxicab deployments in Shanghai and partially simulated datasets from Stockholm) with precision and recall of 90-94%, a significant improvement over past approaches that result in a precision and recall of about 50-60%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storage-aware smartphone energy savings Three case studies of UX with moving products Session details: Location-based services I CoenoFire: monitoring performance indicators of firefighters in real-world missions using smartphones Session details: Sustainability I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1