{"title":"基于时空数据和核密度估计的犯罪预测","authors":"","doi":"10.1109/APCoRISE46197.2019.9318972","DOIUrl":null,"url":null,"abstract":"This study presents a method to predict crimes by using multiple data sources i.e. spatio-temporal crime dataset and zoning district dataset. The contribution of this study lies in the use of Kernel Density Estimation (KDE) and zoning district dataset to address the issue of crimes prediction. The experiments were performed by training Gradient Boosting Machine (GBM) as a classifier on some subset of features. The best result was achieved by using all features including KDE with smoothing and zoning district feature, namely with multiclass logarithmic loss 2.356104 on validation set and 2.35443 on test set.","PeriodicalId":250648,"journal":{"name":"2019 Asia Pacific Conference on Research in Industrial and Systems Engineering (APCoRISE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crimes Prediction Using Spatio-Temporal Data and Kernel Density Estimation\",\"authors\":\"\",\"doi\":\"10.1109/APCoRISE46197.2019.9318972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a method to predict crimes by using multiple data sources i.e. spatio-temporal crime dataset and zoning district dataset. The contribution of this study lies in the use of Kernel Density Estimation (KDE) and zoning district dataset to address the issue of crimes prediction. The experiments were performed by training Gradient Boosting Machine (GBM) as a classifier on some subset of features. The best result was achieved by using all features including KDE with smoothing and zoning district feature, namely with multiclass logarithmic loss 2.356104 on validation set and 2.35443 on test set.\",\"PeriodicalId\":250648,\"journal\":{\"name\":\"2019 Asia Pacific Conference on Research in Industrial and Systems Engineering (APCoRISE)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia Pacific Conference on Research in Industrial and Systems Engineering (APCoRISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCoRISE46197.2019.9318972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia Pacific Conference on Research in Industrial and Systems Engineering (APCoRISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCoRISE46197.2019.9318972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于时空犯罪数据集和分区数据集的多数据源犯罪预测方法。本研究的贡献在于使用核密度估计(KDE)和分区数据集来解决犯罪预测问题。实验通过训练梯度增强机(GBM)作为分类器对一些特征子集进行分类。将包括KDE在内的所有特征结合平滑和分区特征,即验证集的多类对数损失为2.356104,测试集的多类对数损失为2.35443,得到了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crimes Prediction Using Spatio-Temporal Data and Kernel Density Estimation
This study presents a method to predict crimes by using multiple data sources i.e. spatio-temporal crime dataset and zoning district dataset. The contribution of this study lies in the use of Kernel Density Estimation (KDE) and zoning district dataset to address the issue of crimes prediction. The experiments were performed by training Gradient Boosting Machine (GBM) as a classifier on some subset of features. The best result was achieved by using all features including KDE with smoothing and zoning district feature, namely with multiclass logarithmic loss 2.356104 on validation set and 2.35443 on test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Image Processing and Artificial Intelligence based Traffic Signal Control System of Dhaka Model Conceptualization for Optimal Strategies in Transboundary Movement of Waste Electrical and Electronic Equipment: A Game Theory Approach The Design of Model and Inventory Routing Problem (IRP) Algorithm for Swapped Battery at Battery Exchange Station (BES): Case Study of Electric Motor Classifying Twitter Spammer based on User's Behavior using Decision Tree An Improved Pupil Detection Method under Eyeglass Occlusions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1