基于优化多支持向量机的假新闻检测方法

Ganga M, Gini R
{"title":"基于优化多支持向量机的假新闻检测方法","authors":"Ganga M, Gini R","doi":"10.59544/jaad9174/ngcesi23p46","DOIUrl":null,"url":null,"abstract":"Fake News creates erroneous suspense information that can be identified. This spreads dishonesty about a country’s status or overstates the expense of special functions for a government, destroying democracy in certain countries. The project proposes an Multi Support Vector Machine (MSVM) -based approach for detecting fake news. The proposed model will be used to classify or detect the news as fake or real. Principal Component Analysis (PCA) is used for Feature Extraction. Principal Component Analysis (PCA) reduces the dimension of the data set comprising many related variables and recalls the maximum change in actual data. The proposed work will select the essential features with a Firefly-Optimized Algorithm (FA). The Firefly Optimized Algorithm (FA) is one of the various Evolutionary Algorithms (EAs) with various purposes. For the classification of fake news, an Multi Support Vector Machine (MSVM) classifier algorithm is implemented.","PeriodicalId":315694,"journal":{"name":"The International Conference on scientific innovations in Science, Technology, and Management","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Multi Support Vector Machine Based Approach for Fake News Detection\",\"authors\":\"Ganga M, Gini R\",\"doi\":\"10.59544/jaad9174/ngcesi23p46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake News creates erroneous suspense information that can be identified. This spreads dishonesty about a country’s status or overstates the expense of special functions for a government, destroying democracy in certain countries. The project proposes an Multi Support Vector Machine (MSVM) -based approach for detecting fake news. The proposed model will be used to classify or detect the news as fake or real. Principal Component Analysis (PCA) is used for Feature Extraction. Principal Component Analysis (PCA) reduces the dimension of the data set comprising many related variables and recalls the maximum change in actual data. The proposed work will select the essential features with a Firefly-Optimized Algorithm (FA). The Firefly Optimized Algorithm (FA) is one of the various Evolutionary Algorithms (EAs) with various purposes. For the classification of fake news, an Multi Support Vector Machine (MSVM) classifier algorithm is implemented.\",\"PeriodicalId\":315694,\"journal\":{\"name\":\"The International Conference on scientific innovations in Science, Technology, and Management\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Conference on scientific innovations in Science, Technology, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59544/jaad9174/ngcesi23p46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on scientific innovations in Science, Technology, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59544/jaad9174/ngcesi23p46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假新闻制造了可以识别的错误悬念信息。这传播了对一个国家地位的不诚实,或夸大了政府特殊职能的费用,破坏了某些国家的民主。该项目提出了一种基于多支持向量机(MSVM)的假新闻检测方法。所提出的模型将用于对假新闻或真实新闻进行分类或检测。主成分分析(PCA)用于特征提取。主成分分析(Principal Component Analysis, PCA)是一种减少由许多相关变量组成的数据集的维数,并召回实际数据的最大变化的方法。本文将采用萤火虫优化算法(FA)来选择基本特征。萤火虫优化算法(FA)是众多进化算法中的一种,具有多种用途。对于假新闻的分类,实现了多支持向量机(MSVM)分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Multi Support Vector Machine Based Approach for Fake News Detection
Fake News creates erroneous suspense information that can be identified. This spreads dishonesty about a country’s status or overstates the expense of special functions for a government, destroying democracy in certain countries. The project proposes an Multi Support Vector Machine (MSVM) -based approach for detecting fake news. The proposed model will be used to classify or detect the news as fake or real. Principal Component Analysis (PCA) is used for Feature Extraction. Principal Component Analysis (PCA) reduces the dimension of the data set comprising many related variables and recalls the maximum change in actual data. The proposed work will select the essential features with a Firefly-Optimized Algorithm (FA). The Firefly Optimized Algorithm (FA) is one of the various Evolutionary Algorithms (EAs) with various purposes. For the classification of fake news, an Multi Support Vector Machine (MSVM) classifier algorithm is implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Tongue Diagnosis: A Deep Autoencoder Neural Network and Clustering-Based Image Segmentation Approach A study on Organizational Culture and its Impact on Employees Behaviour with special reference to TTK Prestige Ltd, Coimbatore A Study on Effectiveness of Performance Appraisal System With Reference To Santhigiri Ashram, Trivandrum Early Stage Diabetes Prediction of Patients in Big Data Healthcare Using Sophisticated Machine Learning Approach A Study on Effectiveness of Motivational on Employee with Special Reference to Shiash Info Solutions Pvt Ltd, Chennai.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1