利用Google缠结数据对不同SLAM算法进行评价

Liyang Liu, Youbing Wang, Liang Zhao, Shoudong Huang
{"title":"利用Google缠结数据对不同SLAM算法进行评价","authors":"Liyang Liu, Youbing Wang, Liang Zhao, Shoudong Huang","doi":"10.1109/ICIEA.2017.8283158","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate three state-of-the-art Simultaneous Localization and Mapping (SLAM) methods using data extracted from a state-of-the-art device for indoor navigation — the Google Tango tablet. The SLAM algorithms we investigated include Preintegration Visual Inertial Navigation System (VINS), ParallaxBA and ORB-SLAM. We first describe the detailed process of obtaining synchronized IMU and image data from the Google Tango device, then we present some of the SLAM results obtained using the three different SLAM algorithms, all with the datasets collected from Tango. These SLAM results are compared with that obtained from Tango's inbuilt motion tracking system. The advantages and failure modes of the different SLAM algorithms are analysed and illustrated thereafter. The evaluation results presented in this paper are expected to provide some guidance on further development of more robust SLAM algorithms for robotic applications.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evaluation of different SLAM algorithms using Google tangle data\",\"authors\":\"Liyang Liu, Youbing Wang, Liang Zhao, Shoudong Huang\",\"doi\":\"10.1109/ICIEA.2017.8283158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we evaluate three state-of-the-art Simultaneous Localization and Mapping (SLAM) methods using data extracted from a state-of-the-art device for indoor navigation — the Google Tango tablet. The SLAM algorithms we investigated include Preintegration Visual Inertial Navigation System (VINS), ParallaxBA and ORB-SLAM. We first describe the detailed process of obtaining synchronized IMU and image data from the Google Tango device, then we present some of the SLAM results obtained using the three different SLAM algorithms, all with the datasets collected from Tango. These SLAM results are compared with that obtained from Tango's inbuilt motion tracking system. The advantages and failure modes of the different SLAM algorithms are analysed and illustrated thereafter. The evaluation results presented in this paper are expected to provide some guidance on further development of more robust SLAM algorithms for robotic applications.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8283158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们使用从最先进的室内导航设备——谷歌探戈平板电脑中提取的数据,评估了三种最先进的同步定位和地图绘制(SLAM)方法。我们研究的SLAM算法包括预积分视觉惯性导航系统(VINS)、ParallaxBA和ORB-SLAM。我们首先详细描述了从Google Tango设备获取同步IMU和图像数据的过程,然后介绍了使用三种不同的SLAM算法获得的一些SLAM结果,所有这些结果都来自Tango收集的数据集。这些SLAM结果与Tango内置运动跟踪系统获得的结果进行了比较。然后分析和说明了不同SLAM算法的优点和失效模式。本文提出的评估结果有望为机器人应用中更健壮的SLAM算法的进一步开发提供一些指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of different SLAM algorithms using Google tangle data
In this paper, we evaluate three state-of-the-art Simultaneous Localization and Mapping (SLAM) methods using data extracted from a state-of-the-art device for indoor navigation — the Google Tango tablet. The SLAM algorithms we investigated include Preintegration Visual Inertial Navigation System (VINS), ParallaxBA and ORB-SLAM. We first describe the detailed process of obtaining synchronized IMU and image data from the Google Tango device, then we present some of the SLAM results obtained using the three different SLAM algorithms, all with the datasets collected from Tango. These SLAM results are compared with that obtained from Tango's inbuilt motion tracking system. The advantages and failure modes of the different SLAM algorithms are analysed and illustrated thereafter. The evaluation results presented in this paper are expected to provide some guidance on further development of more robust SLAM algorithms for robotic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evolutionary algorithm with 2-D encoding for image segmentation A neural network based place recognition technique for a crowded indoor environment Internet of Things (IoT) in E-commerce: For people with disabilities Predictive analytics for detecting sensor failure using autoregressive integrated moving average model Energy-controlled optimization algorithm for rechargeable unmanned aerial vehicle network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1