{"title":"基于对数极坐标图像的自运动估计","authors":"C. Silva, J. Santos-Victor","doi":"10.1109/ICCV.1998.710833","DOIUrl":null,"url":null,"abstract":"We address the problem of egomotion estimation of a monocular observer moving with arbitrary translation and rotation in an unknown environment, using log-polar images. The method we propose is uniquely based on the spatio-temporal image derivatives, or the normal flow. Thus, we avoid computing the complete optical flow field, which is an ill-posed problem due to the aperture problem. We use a search paradigm based on geometric properties of the normal flow field, and consider a family of search subspaces to estimate the egomotion parameters. These algorithms are particularly well-suited for the log-polar image geometry, as we use a selection of special normal flow, vectors with simple representation in log-polar coordinates. This approach highlights the close coupling between algorithmic aspects and the sensor geometry (retina physiology), often, found in nature. Finally, we present and discuss a set of experiments, for various kinds of camera motions, which show encouraging results.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Egomotion estimation using log-polar images\",\"authors\":\"C. Silva, J. Santos-Victor\",\"doi\":\"10.1109/ICCV.1998.710833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of egomotion estimation of a monocular observer moving with arbitrary translation and rotation in an unknown environment, using log-polar images. The method we propose is uniquely based on the spatio-temporal image derivatives, or the normal flow. Thus, we avoid computing the complete optical flow field, which is an ill-posed problem due to the aperture problem. We use a search paradigm based on geometric properties of the normal flow field, and consider a family of search subspaces to estimate the egomotion parameters. These algorithms are particularly well-suited for the log-polar image geometry, as we use a selection of special normal flow, vectors with simple representation in log-polar coordinates. This approach highlights the close coupling between algorithmic aspects and the sensor geometry (retina physiology), often, found in nature. Finally, we present and discuss a set of experiments, for various kinds of camera motions, which show encouraging results.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We address the problem of egomotion estimation of a monocular observer moving with arbitrary translation and rotation in an unknown environment, using log-polar images. The method we propose is uniquely based on the spatio-temporal image derivatives, or the normal flow. Thus, we avoid computing the complete optical flow field, which is an ill-posed problem due to the aperture problem. We use a search paradigm based on geometric properties of the normal flow field, and consider a family of search subspaces to estimate the egomotion parameters. These algorithms are particularly well-suited for the log-polar image geometry, as we use a selection of special normal flow, vectors with simple representation in log-polar coordinates. This approach highlights the close coupling between algorithmic aspects and the sensor geometry (retina physiology), often, found in nature. Finally, we present and discuss a set of experiments, for various kinds of camera motions, which show encouraging results.