齿轮装配工况诊断的新方法

Shinn-Liang Chang, Pei-Yu Chang, Zongli Yang
{"title":"齿轮装配工况诊断的新方法","authors":"Shinn-Liang Chang, Pei-Yu Chang, Zongli Yang","doi":"10.1109/AMCON.2018.8614762","DOIUrl":null,"url":null,"abstract":"In this study, a novel method is proposed to diagnose the assembly failure of a gearbox. Different kinds of failure mode can be simulated through the CAE software firstly. The signals of the failure modes can thus be store in the database for the purpose of diagnosis of the gear faults. The method avoids the complex experimental process to obtain the signals gathered from the actual device. The database thus could be set up effectively. In this paper, the assemblies of the 3-D gear model, grid mesh of the gear pair, material properties, contact/impact model, hourglass control, etc. are built firstly in the HyperMesh software. Then, LS-DYNA is utilized to analyze the dynamic responses of gear transmission in time domain. The FFT (Fast Fourier Transform), power spectrum, EMD (Empirical Mode Decomposition), and wavelet analysis are applied for signal processing. The fault characteristic parameters can thus be extracted and regularized. BPN (Back-propagation Network) and PNN (Probabilistic Neural Network) methods are then applied to develop the diagnosis system.","PeriodicalId":438307,"journal":{"name":"2018 IEEE International Conference on Advanced Manufacturing (ICAM)","volume":"39 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method in the Diagnosis of the Assembly Conditions of Gears\",\"authors\":\"Shinn-Liang Chang, Pei-Yu Chang, Zongli Yang\",\"doi\":\"10.1109/AMCON.2018.8614762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel method is proposed to diagnose the assembly failure of a gearbox. Different kinds of failure mode can be simulated through the CAE software firstly. The signals of the failure modes can thus be store in the database for the purpose of diagnosis of the gear faults. The method avoids the complex experimental process to obtain the signals gathered from the actual device. The database thus could be set up effectively. In this paper, the assemblies of the 3-D gear model, grid mesh of the gear pair, material properties, contact/impact model, hourglass control, etc. are built firstly in the HyperMesh software. Then, LS-DYNA is utilized to analyze the dynamic responses of gear transmission in time domain. The FFT (Fast Fourier Transform), power spectrum, EMD (Empirical Mode Decomposition), and wavelet analysis are applied for signal processing. The fault characteristic parameters can thus be extracted and regularized. BPN (Back-propagation Network) and PNN (Probabilistic Neural Network) methods are then applied to develop the diagnosis system.\",\"PeriodicalId\":438307,\"journal\":{\"name\":\"2018 IEEE International Conference on Advanced Manufacturing (ICAM)\",\"volume\":\"39 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Advanced Manufacturing (ICAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMCON.2018.8614762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Advanced Manufacturing (ICAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMCON.2018.8614762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的齿轮箱装配故障诊断方法。首先通过CAE软件对不同的失效模式进行仿真。因此,故障模式的信号可以存储在数据库中,用于齿轮故障的诊断。该方法避免了复杂的实验过程,以获得从实际设备采集的信号。这样就可以有效地建立数据库。本文首先在HyperMesh软件中建立了三维齿轮模型、齿轮副网格、材料特性、接触/冲击模型、沙漏控制等组件。然后利用LS-DYNA对齿轮传动系统的动态响应进行时域分析。快速傅立叶变换(FFT)、功率谱、EMD(经验模式分解)和小波分析应用于信号处理。从而可以提取和正则化故障特征参数。然后应用反向传播网络(BPN)和概率神经网络(PNN)方法开发诊断系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Method in the Diagnosis of the Assembly Conditions of Gears
In this study, a novel method is proposed to diagnose the assembly failure of a gearbox. Different kinds of failure mode can be simulated through the CAE software firstly. The signals of the failure modes can thus be store in the database for the purpose of diagnosis of the gear faults. The method avoids the complex experimental process to obtain the signals gathered from the actual device. The database thus could be set up effectively. In this paper, the assemblies of the 3-D gear model, grid mesh of the gear pair, material properties, contact/impact model, hourglass control, etc. are built firstly in the HyperMesh software. Then, LS-DYNA is utilized to analyze the dynamic responses of gear transmission in time domain. The FFT (Fast Fourier Transform), power spectrum, EMD (Empirical Mode Decomposition), and wavelet analysis are applied for signal processing. The fault characteristic parameters can thus be extracted and regularized. BPN (Back-propagation Network) and PNN (Probabilistic Neural Network) methods are then applied to develop the diagnosis system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of the half-angle divergence metrology applied to the inner-layer exposure facility for PCB industry Preparation of TiO2/Single Layer Grapgene Composite Photoanodes for Dye-Sensitized Solar Cells Simulation of Granular Temperature of Abrasive Particles in the EKF-CMP System Effects of Axial Jet-to-Wall Distance on Flow Behavior and Heat Transfer of a Wall Jet at Low Reynolds Number Supplier Selection for Manufacturing Industries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1