一种改进的进化多目标服务组合算法

Hao Yin, Changsheng Zhang, Ying Guo, Bin Zhang
{"title":"一种改进的进化多目标服务组合算法","authors":"Hao Yin, Changsheng Zhang, Ying Guo, Bin Zhang","doi":"10.1109/ISCID.2013.74","DOIUrl":null,"url":null,"abstract":"Evolutionary multi-objective service composition optimizer (E3) is a recently proposed optimization framework for SLA-Aware service composition. It considers multiple SLAs simultaneously and produces a set of Pareto solutions. Two multi-objective genetic algorithms: E3-MOGA and Extreme-E3 provided by E3 have shown very good performance in comparison to NSGA-II. In this paper, an improved version of E3-MOGA, namely E3-IMOGA is proposed, which incorporates a fine-grained domination assignment value strategy. We evaluated our approach experimentally using dataset and compared with E3-MOGA and NSGA-II. It reveals promising results in terms of the quality of individuals and the time for finding all feasible individuals.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Evolutionary Multiobjective Service Composition Algorithm\",\"authors\":\"Hao Yin, Changsheng Zhang, Ying Guo, Bin Zhang\",\"doi\":\"10.1109/ISCID.2013.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary multi-objective service composition optimizer (E3) is a recently proposed optimization framework for SLA-Aware service composition. It considers multiple SLAs simultaneously and produces a set of Pareto solutions. Two multi-objective genetic algorithms: E3-MOGA and Extreme-E3 provided by E3 have shown very good performance in comparison to NSGA-II. In this paper, an improved version of E3-MOGA, namely E3-IMOGA is proposed, which incorporates a fine-grained domination assignment value strategy. We evaluated our approach experimentally using dataset and compared with E3-MOGA and NSGA-II. It reveals promising results in terms of the quality of individuals and the time for finding all feasible individuals.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

进化多目标服务组合优化器(E3)是最近提出的用于sla感知服务组合的优化框架。它同时考虑多个sla,并生成一组Pareto解决方案。与NSGA-II相比,E3提供的E3- moga和Extreme-E3两种多目标遗传算法表现出了非常好的性能。本文提出了一种改进的E3-MOGA,即E3-IMOGA,它包含了一种细粒度的支配分配值策略。我们使用数据集对我们的方法进行了实验评估,并与E3-MOGA和NSGA-II进行了比较。它揭示了在个体的质量和寻找所有可行个体的时间方面有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Evolutionary Multiobjective Service Composition Algorithm
Evolutionary multi-objective service composition optimizer (E3) is a recently proposed optimization framework for SLA-Aware service composition. It considers multiple SLAs simultaneously and produces a set of Pareto solutions. Two multi-objective genetic algorithms: E3-MOGA and Extreme-E3 provided by E3 have shown very good performance in comparison to NSGA-II. In this paper, an improved version of E3-MOGA, namely E3-IMOGA is proposed, which incorporates a fine-grained domination assignment value strategy. We evaluated our approach experimentally using dataset and compared with E3-MOGA and NSGA-II. It reveals promising results in terms of the quality of individuals and the time for finding all feasible individuals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel Application of BP Neural Networks to Testing the Reasonableness of Flood Season Staging Balancing an Inverted Pendulum with an EEG-Based BCI Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering Design of a Novel Portable ECG Monitor for Heart Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1