机器学习在采矿行业颚式破碎机预测性维护中的应用

Mariya Guerroum, M. Zegrari, A. A. Elmahjoub, Mouna Berquedich, Malek Masmoudi
{"title":"机器学习在采矿行业颚式破碎机预测性维护中的应用","authors":"Mariya Guerroum, M. Zegrari, A. A. Elmahjoub, Mouna Berquedich, Malek Masmoudi","doi":"10.1109/ICTMOD52902.2021.9739338","DOIUrl":null,"url":null,"abstract":"Diagnosis and prognosis are both crucial and interlinked steps in the context of predictive maintenance of rotating machines. Risk management correlated with machine Reliability within time intervention. In this paper, the most popular machine learning algorithms are tested and compared to serve Predictive maintenance purposes. The use case of this paper is an industrial jaw crusher from the mining industry production process. Azure machine learning studio platform made it possible to simulate the proposed approaches. The relevance of Machine Learning models for predicting components’ health states is proved while achieving high accuracies.","PeriodicalId":154817,"journal":{"name":"2021 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning for the Predictive Maintenance of a Jaw Crusher in the Mining Industry\",\"authors\":\"Mariya Guerroum, M. Zegrari, A. A. Elmahjoub, Mouna Berquedich, Malek Masmoudi\",\"doi\":\"10.1109/ICTMOD52902.2021.9739338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis and prognosis are both crucial and interlinked steps in the context of predictive maintenance of rotating machines. Risk management correlated with machine Reliability within time intervention. In this paper, the most popular machine learning algorithms are tested and compared to serve Predictive maintenance purposes. The use case of this paper is an industrial jaw crusher from the mining industry production process. Azure machine learning studio platform made it possible to simulate the proposed approaches. The relevance of Machine Learning models for predicting components’ health states is proved while achieving high accuracies.\",\"PeriodicalId\":154817,\"journal\":{\"name\":\"2021 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTMOD52902.2021.9739338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTMOD52902.2021.9739338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在旋转机械的预测性维护中,诊断和预后都是至关重要且相互关联的步骤。风险管理与时间干预下的机器可靠性相关。本文对最流行的机器学习算法进行了测试和比较,以服务于预测性维护目的。本文的用例是来自采矿业生产过程的工业颚式破碎机。Azure机器学习工作室平台使模拟所提出的方法成为可能。在实现高精度的同时,证明了机器学习模型用于预测组件健康状态的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for the Predictive Maintenance of a Jaw Crusher in the Mining Industry
Diagnosis and prognosis are both crucial and interlinked steps in the context of predictive maintenance of rotating machines. Risk management correlated with machine Reliability within time intervention. In this paper, the most popular machine learning algorithms are tested and compared to serve Predictive maintenance purposes. The use case of this paper is an industrial jaw crusher from the mining industry production process. Azure machine learning studio platform made it possible to simulate the proposed approaches. The relevance of Machine Learning models for predicting components’ health states is proved while achieving high accuracies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linking Technology Management Capabilities Perspective with the Management of Technology Platforms: a literature review and preliminary framework Prediction of perishable goods deliveries by GRU neural networks for reduction of logistics costs Which online channel approach suits best for brands' strategies? An affordance perspective CSR Strategies, Investment Efficiency and Sustainable Growth Current Research Landscape of Machine Learning Algorithms in Online Identity Fraud Prediction and Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1