鲁棒模式识别的模糊目标函数

Tai-Ning Yang, Chih-Jen Lee, Shi-Jim Yen
{"title":"鲁棒模式识别的模糊目标函数","authors":"Tai-Ning Yang, Chih-Jen Lee, Shi-Jim Yen","doi":"10.1109/FUZZY.2009.5277269","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the issue of fuzzy objective functions when outliers exist. The outlier set is defined as the complement of the data set. Following this concept, a specially designed fuzzy membership weighted objective function is proposed and the corresponding optimal membership is derived. Based on the proposed robust objective functions, algorithms for clustering are implemented. Artificially generated data are used for comparison.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fuzzy objective functions for robust pattern recognition\",\"authors\":\"Tai-Ning Yang, Chih-Jen Lee, Shi-Jim Yen\",\"doi\":\"10.1109/FUZZY.2009.5277269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the issue of fuzzy objective functions when outliers exist. The outlier set is defined as the complement of the data set. Following this concept, a specially designed fuzzy membership weighted objective function is proposed and the corresponding optimal membership is derived. Based on the proposed robust objective functions, algorithms for clustering are implemented. Artificially generated data are used for comparison.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文考虑了存在异常值时模糊目标函数的问题。离群集被定义为数据集的补集。在此基础上,提出了一种特殊设计的模糊隶属度加权目标函数,并推导出相应的最优隶属度。基于所提出的鲁棒目标函数,实现了聚类算法。人工生成的数据用于比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy objective functions for robust pattern recognition
In this paper, we consider the issue of fuzzy objective functions when outliers exist. The outlier set is defined as the complement of the data set. Following this concept, a specially designed fuzzy membership weighted objective function is proposed and the corresponding optimal membership is derived. Based on the proposed robust objective functions, algorithms for clustering are implemented. Artificially generated data are used for comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1