递归神经网络在质谱成像数据中的癌症检测

F. G. Zanjani, Andreas Panteli, S. Zinger, F. V. D. Sommen, T. Tan, Benjamin Balluff, D. Vos, S. Ellis, R. Heeren, M. Lucas, H. Marquering, Ivo G. H. Jansen, C. D. Savci-Heijink, D. M. Bruin, P. D. With
{"title":"递归神经网络在质谱成像数据中的癌症检测","authors":"F. G. Zanjani, Andreas Panteli, S. Zinger, F. V. D. Sommen, T. Tan, Benjamin Balluff, D. Vos, S. Ellis, R. Heeren, M. Lucas, H. Marquering, Ivo G. H. Jansen, C. D. Savci-Heijink, D. M. Bruin, P. D. With","doi":"10.1109/ISBI.2019.8759571","DOIUrl":null,"url":null,"abstract":"Mass spectrometry imaging (MSI) reveals the localization of a broad scale of compounds ranging from metabolites to proteins in biological tissues. This makes MSI an attractive tool in biomedical research for studying diseases. Computer-aided diagnosis (CAD) systems facilitate the analysis of the molecular profile in tumor tissues to provide a distinctive fingerprint for finding biomarkers. In this paper, the performance of recurrent neural networks (RNNs) is studied on MSI data to exploit their learning capabilities for finding irregular patterns and dependencies in sequential data. In order to design a better CAD model for tumor detection/classification, several configurations of Long Short-Time Memory (LSTM) are examined. The proposed model consists of a 2-layer bidirectional LSTM, each containing 100 LSTM units. The proposed RNN model outperforms the state-of-the-art CNN model by 1.87% and 1.45% higher accuracy in mass spectra classification on lung and bladder cancer datasets with a sixfold faster training time.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cancer Detection in Mass Spectrometry Imaging Data by Recurrent Neural Networks\",\"authors\":\"F. G. Zanjani, Andreas Panteli, S. Zinger, F. V. D. Sommen, T. Tan, Benjamin Balluff, D. Vos, S. Ellis, R. Heeren, M. Lucas, H. Marquering, Ivo G. H. Jansen, C. D. Savci-Heijink, D. M. Bruin, P. D. With\",\"doi\":\"10.1109/ISBI.2019.8759571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass spectrometry imaging (MSI) reveals the localization of a broad scale of compounds ranging from metabolites to proteins in biological tissues. This makes MSI an attractive tool in biomedical research for studying diseases. Computer-aided diagnosis (CAD) systems facilitate the analysis of the molecular profile in tumor tissues to provide a distinctive fingerprint for finding biomarkers. In this paper, the performance of recurrent neural networks (RNNs) is studied on MSI data to exploit their learning capabilities for finding irregular patterns and dependencies in sequential data. In order to design a better CAD model for tumor detection/classification, several configurations of Long Short-Time Memory (LSTM) are examined. The proposed model consists of a 2-layer bidirectional LSTM, each containing 100 LSTM units. The proposed RNN model outperforms the state-of-the-art CNN model by 1.87% and 1.45% higher accuracy in mass spectra classification on lung and bladder cancer datasets with a sixfold faster training time.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

质谱成像(MSI)揭示了生物组织中从代谢物到蛋白质的广泛化合物的定位。这使得MSI成为生物医学研究中研究疾病的一个有吸引力的工具。计算机辅助诊断(CAD)系统有助于分析肿瘤组织中的分子特征,为寻找生物标志物提供独特的指纹。本文研究了递归神经网络(rnn)在MSI数据上的性能,以利用其在序列数据中发现不规则模式和依赖关系的学习能力。为了设计一个更好的用于肿瘤检测/分类的CAD模型,研究了长短时记忆(LSTM)的几种配置。该模型由两层双向LSTM组成,每层LSTM包含100个LSTM单元。本文提出的RNN模型在肺癌和膀胱癌数据集上的质谱分类准确率分别比目前最先进的CNN模型高1.87%和1.45%,训练时间提高了6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cancer Detection in Mass Spectrometry Imaging Data by Recurrent Neural Networks
Mass spectrometry imaging (MSI) reveals the localization of a broad scale of compounds ranging from metabolites to proteins in biological tissues. This makes MSI an attractive tool in biomedical research for studying diseases. Computer-aided diagnosis (CAD) systems facilitate the analysis of the molecular profile in tumor tissues to provide a distinctive fingerprint for finding biomarkers. In this paper, the performance of recurrent neural networks (RNNs) is studied on MSI data to exploit their learning capabilities for finding irregular patterns and dependencies in sequential data. In order to design a better CAD model for tumor detection/classification, several configurations of Long Short-Time Memory (LSTM) are examined. The proposed model consists of a 2-layer bidirectional LSTM, each containing 100 LSTM units. The proposed RNN model outperforms the state-of-the-art CNN model by 1.87% and 1.45% higher accuracy in mass spectra classification on lung and bladder cancer datasets with a sixfold faster training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1