图时间序列数据集的平稳性研究

Eylem Tugce Guneyi, Elif Vural
{"title":"图时间序列数据集的平稳性研究","authors":"Eylem Tugce Guneyi, Elif Vural","doi":"10.1109/SIU49456.2020.9302376","DOIUrl":null,"url":null,"abstract":"Graphs permit the analysis of the relationships in complex data sets effectively. Stationarity is a feature that facilitates the analysis and processing of random time signals. Since graphs have an irregular structure, the definition of classical stationarity does not apply to graphs. In this study, we study how stationarity is defined for graph random processes and examine the validity of the stationarity assumption with experiments on synthetic and real data sets.","PeriodicalId":312627,"journal":{"name":"2020 28th Signal Processing and Communications Applications Conference (SIU)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Stationarity for Graph Time Series Data Sets\",\"authors\":\"Eylem Tugce Guneyi, Elif Vural\",\"doi\":\"10.1109/SIU49456.2020.9302376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphs permit the analysis of the relationships in complex data sets effectively. Stationarity is a feature that facilitates the analysis and processing of random time signals. Since graphs have an irregular structure, the definition of classical stationarity does not apply to graphs. In this study, we study how stationarity is defined for graph random processes and examine the validity of the stationarity assumption with experiments on synthetic and real data sets.\",\"PeriodicalId\":312627,\"journal\":{\"name\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU49456.2020.9302376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU49456.2020.9302376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图可以有效地分析复杂数据集中的关系。平稳性是一种便于分析和处理随机时间信号的特性。由于图具有不规则的结构,经典的平稳性定义不适用于图。在本研究中,我们研究了如何定义图随机过程的平稳性,并通过在合成数据集和真实数据集上的实验来检验平稳性假设的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Stationarity for Graph Time Series Data Sets
Graphs permit the analysis of the relationships in complex data sets effectively. Stationarity is a feature that facilitates the analysis and processing of random time signals. Since graphs have an irregular structure, the definition of classical stationarity does not apply to graphs. In this study, we study how stationarity is defined for graph random processes and examine the validity of the stationarity assumption with experiments on synthetic and real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skin Lesion Classification With Deep CNN Ensembles Design of a New System for Upper Extremity Movement Ability Assessment Stock Market Prediction with Stacked Autoencoder Based Feature Reduction Segmentation networks reinforced with attribute profiles for large scale land-cover map production Encoded Deep Features for Visual Place Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1