基于线性回归的磁传感器阵列定位方法

Jiaqi Li, Jin Xiao, Zhijie Zhang, Dan Sun
{"title":"基于线性回归的磁传感器阵列定位方法","authors":"Jiaqi Li, Jin Xiao, Zhijie Zhang, Dan Sun","doi":"10.1109/ICIEA.2017.8282827","DOIUrl":null,"url":null,"abstract":"In this paper, a new positioning method based on magnetic sensor array is proposed, which includes the linear regression algorithm in machine learning, to make the system predict the position of the object in the magnetic field according to the measured data more accurately without large fluctuation caused by noise and surrounding magnetic fields. The feasibility of this method is introduced in the paper and the experiment proves that it could reduce noise and improve positioning accuracy.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positioning method for magnetic sensor array based on linear regression\",\"authors\":\"Jiaqi Li, Jin Xiao, Zhijie Zhang, Dan Sun\",\"doi\":\"10.1109/ICIEA.2017.8282827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new positioning method based on magnetic sensor array is proposed, which includes the linear regression algorithm in machine learning, to make the system predict the position of the object in the magnetic field according to the measured data more accurately without large fluctuation caused by noise and surrounding magnetic fields. The feasibility of this method is introduced in the paper and the experiment proves that it could reduce noise and improve positioning accuracy.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8282827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8282827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于磁传感器阵列的定位方法,其中包括机器学习中的线性回归算法,使系统根据测量数据更准确地预测物体在磁场中的位置,而不会因噪声和周围磁场而产生较大的波动。文中介绍了该方法的可行性,并通过实验证明了该方法能有效地降低噪声,提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Positioning method for magnetic sensor array based on linear regression
In this paper, a new positioning method based on magnetic sensor array is proposed, which includes the linear regression algorithm in machine learning, to make the system predict the position of the object in the magnetic field according to the measured data more accurately without large fluctuation caused by noise and surrounding magnetic fields. The feasibility of this method is introduced in the paper and the experiment proves that it could reduce noise and improve positioning accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evolutionary algorithm with 2-D encoding for image segmentation A neural network based place recognition technique for a crowded indoor environment Internet of Things (IoT) in E-commerce: For people with disabilities Predictive analytics for detecting sensor failure using autoregressive integrated moving average model Energy-controlled optimization algorithm for rechargeable unmanned aerial vehicle network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1