{"title":"通过Intel DPDK支持细粒度网络功能","authors":"Ivano Cerrato, Mauro Annarumma, Fulvio Risso","doi":"10.1109/EWSDN.2014.33","DOIUrl":null,"url":null,"abstract":"Network Functions Virtualization (NFV) aims to transform network functions into software images, executed on standard, high-volume hardware. This paper focuses on the case in which a massive number of (tiny) network function instances are executed simultaneously on the same server and presents our experience in the design of the components that move the traffic across those functions, based on the primitives offered by the Intel DPDK framework. This paper proposes different possible architectures, it characterizes the resulting implementations, and it evaluates their applicability under different constraints.","PeriodicalId":103165,"journal":{"name":"2014 Third European Workshop on Software Defined Networks","volume":"17 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Supporting Fine-Grained Network Functions through Intel DPDK\",\"authors\":\"Ivano Cerrato, Mauro Annarumma, Fulvio Risso\",\"doi\":\"10.1109/EWSDN.2014.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network Functions Virtualization (NFV) aims to transform network functions into software images, executed on standard, high-volume hardware. This paper focuses on the case in which a massive number of (tiny) network function instances are executed simultaneously on the same server and presents our experience in the design of the components that move the traffic across those functions, based on the primitives offered by the Intel DPDK framework. This paper proposes different possible architectures, it characterizes the resulting implementations, and it evaluates their applicability under different constraints.\",\"PeriodicalId\":103165,\"journal\":{\"name\":\"2014 Third European Workshop on Software Defined Networks\",\"volume\":\"17 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Third European Workshop on Software Defined Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EWSDN.2014.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Third European Workshop on Software Defined Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWSDN.2014.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supporting Fine-Grained Network Functions through Intel DPDK
Network Functions Virtualization (NFV) aims to transform network functions into software images, executed on standard, high-volume hardware. This paper focuses on the case in which a massive number of (tiny) network function instances are executed simultaneously on the same server and presents our experience in the design of the components that move the traffic across those functions, based on the primitives offered by the Intel DPDK framework. This paper proposes different possible architectures, it characterizes the resulting implementations, and it evaluates their applicability under different constraints.