人为因素评估的机器学习工具——在狮航波音737-8 Max事故中的应用

C. Morais, K. Yung, E. Patelli
{"title":"人为因素评估的机器学习工具——在狮航波音737-8 Max事故中的应用","authors":"C. Morais, K. Yung, E. Patelli","doi":"10.7712/120219.6355.18709","DOIUrl":null,"url":null,"abstract":"The capability of learning from accidents as quickly as possible allows preventing repeated mistakes to happen. This has been shown by the small time interval between two accidents with the same aircraft model: the Boeing 737-8 MAX. However, learning from major accidents and subsequently update the developed accident models has been proved to be a cumbersome process. This is because safety specialists use to take a long period of time to read and digest the information, as the accident reports are usually very detailed, long and sometimes with a difficult language and structure. A strategy to automatically extract relevant information from report accidents and update model parameters is investigated. A machine-learning tool has been developed and trained on previous expert opinion on several accident reports. The intention is that for each new accident report that is issued, the machine can quickly identify the more relevant features in seconds-instead of waiting for some days for the expert opinion. This way, the model can be more quickly and dynamically updated. An application to the preliminary accident report of the 2018 Lion Air accident is provided to show the feasibility of the machine-learning proposed approach.","PeriodicalId":153829,"journal":{"name":"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)","volume":"123 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MACHINE-LEARNING TOOL FOR HUMAN FACTORS EVALUATION – APPLICATION TO LION AIR BOEING 737-8 MAX ACCIDENT\",\"authors\":\"C. Morais, K. Yung, E. Patelli\",\"doi\":\"10.7712/120219.6355.18709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability of learning from accidents as quickly as possible allows preventing repeated mistakes to happen. This has been shown by the small time interval between two accidents with the same aircraft model: the Boeing 737-8 MAX. However, learning from major accidents and subsequently update the developed accident models has been proved to be a cumbersome process. This is because safety specialists use to take a long period of time to read and digest the information, as the accident reports are usually very detailed, long and sometimes with a difficult language and structure. A strategy to automatically extract relevant information from report accidents and update model parameters is investigated. A machine-learning tool has been developed and trained on previous expert opinion on several accident reports. The intention is that for each new accident report that is issued, the machine can quickly identify the more relevant features in seconds-instead of waiting for some days for the expert opinion. This way, the model can be more quickly and dynamically updated. An application to the preliminary accident report of the 2018 Lion Air accident is provided to show the feasibility of the machine-learning proposed approach.\",\"PeriodicalId\":153829,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)\",\"volume\":\"123 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7712/120219.6355.18709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7712/120219.6355.18709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从事故中尽快吸取教训的能力可以防止重复错误的发生。两起事故之间的时间间隔很短就证明了这一点,这两起事故的飞机型号都是波音737-8 MAX。然而,从重大事故中学习并随后更新已开发的事故模型已被证明是一个繁琐的过程。这是因为安全专家通常要花很长时间来阅读和消化这些信息,因为事故报告通常非常详细、冗长,有时语言和结构也很复杂。研究了一种从事故报告中自动提取相关信息和更新模型参数的策略。一种机器学习工具已经开发出来,并在之前的几份事故报告的专家意见基础上进行了培训。这样做的目的是,对于每一份新的事故报告,机器都能在几秒钟内快速识别出更相关的特征,而不是等上几天才能得到专家的意见。这样,模型可以更快、更动态地更新。提供了2018年狮航事故初步事故报告的应用程序,以展示机器学习提议方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MACHINE-LEARNING TOOL FOR HUMAN FACTORS EVALUATION – APPLICATION TO LION AIR BOEING 737-8 MAX ACCIDENT
The capability of learning from accidents as quickly as possible allows preventing repeated mistakes to happen. This has been shown by the small time interval between two accidents with the same aircraft model: the Boeing 737-8 MAX. However, learning from major accidents and subsequently update the developed accident models has been proved to be a cumbersome process. This is because safety specialists use to take a long period of time to read and digest the information, as the accident reports are usually very detailed, long and sometimes with a difficult language and structure. A strategy to automatically extract relevant information from report accidents and update model parameters is investigated. A machine-learning tool has been developed and trained on previous expert opinion on several accident reports. The intention is that for each new accident report that is issued, the machine can quickly identify the more relevant features in seconds-instead of waiting for some days for the expert opinion. This way, the model can be more quickly and dynamically updated. An application to the preliminary accident report of the 2018 Lion Air accident is provided to show the feasibility of the machine-learning proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A DIRECT HAMILTONIAN MCMC APPROACH FOR RELIABILITY ESTIMATION A TWO-STAGE SURROGATE MODELING APPROACH FOR THE APPROXIMATION OF MODELS WITH NON-SMOOTH OUTPUTS BLACK-BOX PROPAGATION OF FAILURE PROBABILITIES UNDER EPISTEMIC UNCERTAINTY UNCERTAINTY QUANTIFICATION OF OPTIMAL THRESHOLD FAILURE PROBABILITY FOR PREDICTIVE MAINTENANCE USING CONFIDENCE STRUCTURES REDUCED MODEL-ERROR SOURCE TERMS FOR FLUID FLOW
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1