{"title":"具有监督层的自组织映射","authors":"Ludovic Platon, F. Zehraoui, F. Tahi","doi":"10.1109/WSOM.2017.8020022","DOIUrl":null,"url":null,"abstract":"We present in this paper a new approach of supervised self organizing map (SOM). We added a supervised perceptron layer to the classical SOM approach. This combination allows the classification of new patterns by taking into account all the map prototypes without changing the SOM organization. We also propose to associate two reject options to our supervised SOM. This allows to improve the results reliability and to discover new classes in applications where some classes are unknown. We obtain two variants of supervised SOM with rejection that have been evaluated on different datasets. The results indicate that our approaches are competitive with most popular supervised leaning algorithms like support vector machines and random forest.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Self-organizing maps with supervised layer\",\"authors\":\"Ludovic Platon, F. Zehraoui, F. Tahi\",\"doi\":\"10.1109/WSOM.2017.8020022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present in this paper a new approach of supervised self organizing map (SOM). We added a supervised perceptron layer to the classical SOM approach. This combination allows the classification of new patterns by taking into account all the map prototypes without changing the SOM organization. We also propose to associate two reject options to our supervised SOM. This allows to improve the results reliability and to discover new classes in applications where some classes are unknown. We obtain two variants of supervised SOM with rejection that have been evaluated on different datasets. The results indicate that our approaches are competitive with most popular supervised leaning algorithms like support vector machines and random forest.\",\"PeriodicalId\":130086,\"journal\":{\"name\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSOM.2017.8020022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种新的有监督自组织映射(SOM)方法。我们在经典的SOM方法中添加了一个监督感知器层。这种组合允许在不改变SOM组织的情况下,通过考虑所有的地图原型来对新模式进行分类。我们还建议将两个拒绝选项与我们的监督SOM关联起来。这可以提高结果的可靠性,并在某些类未知的应用程序中发现新类。我们得到了两个带有拒绝的监督式SOM的变体,它们已经在不同的数据集上进行了评估。结果表明,我们的方法与大多数流行的监督学习算法(如支持向量机和随机森林)具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-organizing maps with supervised layer
We present in this paper a new approach of supervised self organizing map (SOM). We added a supervised perceptron layer to the classical SOM approach. This combination allows the classification of new patterns by taking into account all the map prototypes without changing the SOM organization. We also propose to associate two reject options to our supervised SOM. This allows to improve the results reliability and to discover new classes in applications where some classes are unknown. We obtain two variants of supervised SOM with rejection that have been evaluated on different datasets. The results indicate that our approaches are competitive with most popular supervised leaning algorithms like support vector machines and random forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of gradient methods for matrix learning vector quantization Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning Prototypes and matrix relevance learning in complex fourier space Imputation of reactive silica and available alumina in bauxites by self-organizing maps An evolutionary building algorithm for Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1