ADAS的虚拟测试场景:与真实场景的距离很重要!

Mohamed El Mostadi, H. Waeselynck, Jean-Marc Gabriel
{"title":"ADAS的虚拟测试场景:与真实场景的距离很重要!","authors":"Mohamed El Mostadi, H. Waeselynck, Jean-Marc Gabriel","doi":"10.1109/iv51971.2022.9827170","DOIUrl":null,"url":null,"abstract":"Testing in virtual road environments is a widespread approach to validate advanced driver assistance systems (ADAS). A number of automated strategies have been proposed to explore dangerous scenarios, like search-based strategies guided by fitness functions. However, such strategies are likely to produce many uninteresting scenarios, representing so extreme driving situations that fatal accidents are unavoidable irrespective of the action of the ADAS. We propose leveraging datasets from real drives to better align the virtual scenarios to reasonable ones. The alignment is based on a simple distance metric that relates the virtual scenario parameters to the real data. We demonstrate the use of this metric for testing an autonomous emergency braking (AEB) system, taking the highD dataset as a reference for normal situations. We show how search-based testing quickly converges toward very distant scenarios that do not bring much insight into the AEB performance. We then provide an example of a distance-aware strategy that searches for less extreme scenarios that the AEB cannot overcome.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Virtual Test Scenarios for ADAS: Distance to Real Scenarios Matters!\",\"authors\":\"Mohamed El Mostadi, H. Waeselynck, Jean-Marc Gabriel\",\"doi\":\"10.1109/iv51971.2022.9827170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testing in virtual road environments is a widespread approach to validate advanced driver assistance systems (ADAS). A number of automated strategies have been proposed to explore dangerous scenarios, like search-based strategies guided by fitness functions. However, such strategies are likely to produce many uninteresting scenarios, representing so extreme driving situations that fatal accidents are unavoidable irrespective of the action of the ADAS. We propose leveraging datasets from real drives to better align the virtual scenarios to reasonable ones. The alignment is based on a simple distance metric that relates the virtual scenario parameters to the real data. We demonstrate the use of this metric for testing an autonomous emergency braking (AEB) system, taking the highD dataset as a reference for normal situations. We show how search-based testing quickly converges toward very distant scenarios that do not bring much insight into the AEB performance. We then provide an example of a distance-aware strategy that searches for less extreme scenarios that the AEB cannot overcome.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在虚拟道路环境中进行测试是验证先进驾驶辅助系统(ADAS)的一种广泛方法。已经提出了许多自动化策略来探索危险场景,例如由适应度函数指导的基于搜索的策略。然而,这样的策略可能会产生许多无趣的场景,代表如此极端的驾驶情况,致命的事故是不可避免的,无论ADAS的行动。我们建议利用来自真实驱动器的数据集来更好地将虚拟场景与合理的场景结合起来。对齐基于一个简单的距离度量,该度量将虚拟场景参数与真实数据联系起来。我们演示了使用该度量来测试自动紧急制动(AEB)系统,并将高d数据集作为正常情况下的参考。我们展示了基于搜索的测试如何快速地收敛到非常遥远的场景,这些场景不会对AEB的性能带来太多的了解。然后,我们提供了一个距离感知策略的示例,该策略搜索AEB无法克服的不太极端的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual Test Scenarios for ADAS: Distance to Real Scenarios Matters!
Testing in virtual road environments is a widespread approach to validate advanced driver assistance systems (ADAS). A number of automated strategies have been proposed to explore dangerous scenarios, like search-based strategies guided by fitness functions. However, such strategies are likely to produce many uninteresting scenarios, representing so extreme driving situations that fatal accidents are unavoidable irrespective of the action of the ADAS. We propose leveraging datasets from real drives to better align the virtual scenarios to reasonable ones. The alignment is based on a simple distance metric that relates the virtual scenario parameters to the real data. We demonstrate the use of this metric for testing an autonomous emergency braking (AEB) system, taking the highD dataset as a reference for normal situations. We show how search-based testing quickly converges toward very distant scenarios that do not bring much insight into the AEB performance. We then provide an example of a distance-aware strategy that searches for less extreme scenarios that the AEB cannot overcome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1