非参数邻域分类规则在多分类器组合中的应用

Deqiang Han, Chongzhao Han, Yi Yang, Yu Liu, Yongqi Liang
{"title":"非参数邻域分类规则在多分类器组合中的应用","authors":"Deqiang Han, Chongzhao Han, Yi Yang, Yu Liu, Yongqi Liang","doi":"10.1109/ISIC.2008.4635967","DOIUrl":null,"url":null,"abstract":"A multiple classifier combination approach based on nonparametric neighborhood classifiers is proposed in this paper. Two different types of nonparametric neighborhood classifiers are used for each query sample, which can be regarded as two different sources of evidence. One type of member classifier emphasizes the similarity and the other type emphasizes the spatial distribution in training set with respect to the query sample. Two mass functions then can be determined based on two different mass function generation methods proposed. According to evidence combination, better classification accuracy can be obtained. The approach proposed has no problem of parameter optimization or selection. In the experiments, the efficacy and rationality of the methods proposed are verified.","PeriodicalId":342070,"journal":{"name":"2008 IEEE International Symposium on Intelligent Control","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On The Use of Nonparametric Neighborhood Classification Rules in Multiple Classifier Combination\",\"authors\":\"Deqiang Han, Chongzhao Han, Yi Yang, Yu Liu, Yongqi Liang\",\"doi\":\"10.1109/ISIC.2008.4635967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiple classifier combination approach based on nonparametric neighborhood classifiers is proposed in this paper. Two different types of nonparametric neighborhood classifiers are used for each query sample, which can be regarded as two different sources of evidence. One type of member classifier emphasizes the similarity and the other type emphasizes the spatial distribution in training set with respect to the query sample. Two mass functions then can be determined based on two different mass function generation methods proposed. According to evidence combination, better classification accuracy can be obtained. The approach proposed has no problem of parameter optimization or selection. In the experiments, the efficacy and rationality of the methods proposed are verified.\",\"PeriodicalId\":342070,\"journal\":{\"name\":\"2008 IEEE International Symposium on Intelligent Control\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2008.4635967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2008.4635967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于非参数邻域分类器的多分类器组合方法。每个查询样本使用了两种不同类型的非参数邻域分类器,这可以看作是两个不同的证据来源。一种类型的成员分类器强调相似性,另一种类型的成员分类器强调训练集相对于查询样本的空间分布。然后根据提出的两种不同的质量函数生成方法确定两个质量函数。通过证据组合,可以获得较好的分类精度。该方法不存在参数优化和选择问题。实验验证了所提方法的有效性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On The Use of Nonparametric Neighborhood Classification Rules in Multiple Classifier Combination
A multiple classifier combination approach based on nonparametric neighborhood classifiers is proposed in this paper. Two different types of nonparametric neighborhood classifiers are used for each query sample, which can be regarded as two different sources of evidence. One type of member classifier emphasizes the similarity and the other type emphasizes the spatial distribution in training set with respect to the query sample. Two mass functions then can be determined based on two different mass function generation methods proposed. According to evidence combination, better classification accuracy can be obtained. The approach proposed has no problem of parameter optimization or selection. In the experiments, the efficacy and rationality of the methods proposed are verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Intelligent Control Scheme for Activated Sludge Wastewater Treatment Deterministic Learning and Rapid Dynamical Pattern Recognition of Discrete-Time Systems Dynamic Mode, Probe Based High Density Data Storage: A collaborative effort with IBM, Zurich Research Labs A Multi-agent System for Integrated Control and Asset Management of Petroleum Production Facilities - Part 2: Prototype Design Verification Discrete-time Neural Network Control for a Linear Induction Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1