S-L1:基于软件的GPU L1缓存,在数据处理应用中性能优于硬件L1

Reza Mokhtari, M. Stumm
{"title":"S-L1:基于软件的GPU L1缓存,在数据处理应用中性能优于硬件L1","authors":"Reza Mokhtari, M. Stumm","doi":"10.1145/2818950.2818969","DOIUrl":null,"url":null,"abstract":"Implementing a GPU L1 data cache entirely in software to usurp the hardware L1 cache sounds counter-intuitive. However, we show how a software L1 cache can perform significantly better than the hardware L1 cache for data-intensive streaming (i.e., \"Big-Data\") GPGPU applications. Hardware L1 data caches can perform poorly on current GPUs, because the size of the L1 is far too small and its cache line size is too large given the number of threads that typically need to run in parallel. Our paper makes two contributions. First, we experimentally characterize the performance behavior of modern GPU memory hierarchies and in doing so identify a number of bottlenecks. Secondly, we describe the design and implementation of a software L1 cache, S-L1. On ten streaming GPGPU applications, S-L1 performs 1.9 times faster, on average, when compared to using the default hardware L1, and 2.1 times faster, on average, when compared to using no L1 cache.","PeriodicalId":389462,"journal":{"name":"Proceedings of the 2015 International Symposium on Memory Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"S-L1: A Software-based GPU L1 Cache that Outperforms the Hardware L1 for Data Processing Applications\",\"authors\":\"Reza Mokhtari, M. Stumm\",\"doi\":\"10.1145/2818950.2818969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing a GPU L1 data cache entirely in software to usurp the hardware L1 cache sounds counter-intuitive. However, we show how a software L1 cache can perform significantly better than the hardware L1 cache for data-intensive streaming (i.e., \\\"Big-Data\\\") GPGPU applications. Hardware L1 data caches can perform poorly on current GPUs, because the size of the L1 is far too small and its cache line size is too large given the number of threads that typically need to run in parallel. Our paper makes two contributions. First, we experimentally characterize the performance behavior of modern GPU memory hierarchies and in doing so identify a number of bottlenecks. Secondly, we describe the design and implementation of a software L1 cache, S-L1. On ten streaming GPGPU applications, S-L1 performs 1.9 times faster, on average, when compared to using the default hardware L1, and 2.1 times faster, on average, when compared to using no L1 cache.\",\"PeriodicalId\":389462,\"journal\":{\"name\":\"Proceedings of the 2015 International Symposium on Memory Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Symposium on Memory Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818950.2818969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Memory Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818950.2818969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

完全在软件中实现GPU L1数据缓存以取代硬件L1缓存听起来违反直觉。然而,我们展示了软件L1缓存如何在数据密集型流(即“大数据”)GPGPU应用程序中比硬件L1缓存表现得更好。硬件L1数据缓存在当前gpu上的性能很差,因为L1的大小太小,而且考虑到通常需要并行运行的线程数量,它的缓存行大小太大。我们的论文有两个贡献。首先,我们通过实验表征了现代GPU内存层次结构的性能行为,并在此过程中确定了一些瓶颈。其次,我们描述了软件L1缓存S-L1的设计和实现。在10个流式GPGPU应用程序上,与使用默认硬件L1相比,S-L1的执行速度平均快1.9倍,与不使用L1缓存相比,平均快2.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
S-L1: A Software-based GPU L1 Cache that Outperforms the Hardware L1 for Data Processing Applications
Implementing a GPU L1 data cache entirely in software to usurp the hardware L1 cache sounds counter-intuitive. However, we show how a software L1 cache can perform significantly better than the hardware L1 cache for data-intensive streaming (i.e., "Big-Data") GPGPU applications. Hardware L1 data caches can perform poorly on current GPUs, because the size of the L1 is far too small and its cache line size is too large given the number of threads that typically need to run in parallel. Our paper makes two contributions. First, we experimentally characterize the performance behavior of modern GPU memory hierarchies and in doing so identify a number of bottlenecks. Secondly, we describe the design and implementation of a software L1 cache, S-L1. On ten streaming GPGPU applications, S-L1 performs 1.9 times faster, on average, when compared to using the default hardware L1, and 2.1 times faster, on average, when compared to using no L1 cache.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MEMST: Cloning Memory Behavior using Stochastic Traces Dynamic Memory Pressure Aware Ballooning Another Trip to the Wall: How Much Will Stacked DRAM Benefit HPC? E-ECC: Low Power Erasure and Error Correction Schemes for Increasing Reliability of Commodity DRAM Systems Inefficiencies in the Cache Hierarchy: A Sensitivity Study of Cacheline Size with Mobile Workloads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1