Ian T Foster, N. Karonis, C. Kesselman, G. Koenig, S. Tuecke
{"title":"用于高性能分布式计算的安全通信基础设施","authors":"Ian T Foster, N. Karonis, C. Kesselman, G. Koenig, S. Tuecke","doi":"10.1109/HPDC.1997.622369","DOIUrl":null,"url":null,"abstract":"Applications that use high-speed networks to connect geographically distributed supercomputers, databases, and scientific instruments may operate over open networks and access valuable resources. Hence, they can require mechanisms for ensuring integrity and confidentiality of communications and for authenticating both users and resources. Security solutions developed for traditional client-server applications do not provide direct support for the program structures, programming tools, and performance requirements encountered in these applications. We address these requirements via a security-enhanced version of the Nexus communication library, which we use to provide secure versions of parallel libraries and languages, including the Message Passing Interface. These tools permit a fine degree of control over what, where, and when security mechanisms are applied. In particular, a single application can mix secure and nonsecure communication allowing the programmer to make fine-grained security/performance tradeoffs. We present performance results that quantify the performance of our infrastructure.","PeriodicalId":243171,"journal":{"name":"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A secure communications infrastructure for high-performance distributed computing\",\"authors\":\"Ian T Foster, N. Karonis, C. Kesselman, G. Koenig, S. Tuecke\",\"doi\":\"10.1109/HPDC.1997.622369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications that use high-speed networks to connect geographically distributed supercomputers, databases, and scientific instruments may operate over open networks and access valuable resources. Hence, they can require mechanisms for ensuring integrity and confidentiality of communications and for authenticating both users and resources. Security solutions developed for traditional client-server applications do not provide direct support for the program structures, programming tools, and performance requirements encountered in these applications. We address these requirements via a security-enhanced version of the Nexus communication library, which we use to provide secure versions of parallel libraries and languages, including the Message Passing Interface. These tools permit a fine degree of control over what, where, and when security mechanisms are applied. In particular, a single application can mix secure and nonsecure communication allowing the programmer to make fine-grained security/performance tradeoffs. We present performance results that quantify the performance of our infrastructure.\",\"PeriodicalId\":243171,\"journal\":{\"name\":\"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPDC.1997.622369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.1997.622369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A secure communications infrastructure for high-performance distributed computing
Applications that use high-speed networks to connect geographically distributed supercomputers, databases, and scientific instruments may operate over open networks and access valuable resources. Hence, they can require mechanisms for ensuring integrity and confidentiality of communications and for authenticating both users and resources. Security solutions developed for traditional client-server applications do not provide direct support for the program structures, programming tools, and performance requirements encountered in these applications. We address these requirements via a security-enhanced version of the Nexus communication library, which we use to provide secure versions of parallel libraries and languages, including the Message Passing Interface. These tools permit a fine degree of control over what, where, and when security mechanisms are applied. In particular, a single application can mix secure and nonsecure communication allowing the programmer to make fine-grained security/performance tradeoffs. We present performance results that quantify the performance of our infrastructure.