使用搜索查询的神经人口预测

Chuhan Wu, Fangzhao Wu, Junxin Liu, Shaojian He, Yongfeng Huang, Xing Xie
{"title":"使用搜索查询的神经人口预测","authors":"Chuhan Wu, Fangzhao Wu, Junxin Liu, Shaojian He, Yongfeng Huang, Xing Xie","doi":"10.1145/3289600.3291034","DOIUrl":null,"url":null,"abstract":"Demographics of online users such as age and gender play an important role in personalized web applications. However, it is difficult to directly obtain the demographic information of online users. Luckily, search queries can cover many online users and the search queries from users with different demographics usually have some difference in contents and writing styles. Thus, search queries can provide useful clues for demographic prediction. In this paper, we study predicting users' demographics based on their search queries, and propose a neural approach for this task. Since search queries can be very noisy and many of them are not useful, instead of combining all queries together for user representation, in our approach we propose a hierarchical user representation with attention (HURA) model to learn informative user representations from their search queries. Our HURA model first learns representations for search queries from words using a word encoder, which consists of a CNN network and a word-level attention network to select important words. Then we learn representations of users based on the representations of their search queries using a query encoder, which contains a CNN network to capture the local contexts of search queries and a query-level attention network to select informative search queries for demographic prediction. Experiments on two real-world datasets validate that our approach can effectively improve the performance of search query based age and gender prediction and consistently outperform many baseline methods.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Neural Demographic Prediction using Search Query\",\"authors\":\"Chuhan Wu, Fangzhao Wu, Junxin Liu, Shaojian He, Yongfeng Huang, Xing Xie\",\"doi\":\"10.1145/3289600.3291034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demographics of online users such as age and gender play an important role in personalized web applications. However, it is difficult to directly obtain the demographic information of online users. Luckily, search queries can cover many online users and the search queries from users with different demographics usually have some difference in contents and writing styles. Thus, search queries can provide useful clues for demographic prediction. In this paper, we study predicting users' demographics based on their search queries, and propose a neural approach for this task. Since search queries can be very noisy and many of them are not useful, instead of combining all queries together for user representation, in our approach we propose a hierarchical user representation with attention (HURA) model to learn informative user representations from their search queries. Our HURA model first learns representations for search queries from words using a word encoder, which consists of a CNN network and a word-level attention network to select important words. Then we learn representations of users based on the representations of their search queries using a query encoder, which contains a CNN network to capture the local contexts of search queries and a query-level attention network to select informative search queries for demographic prediction. Experiments on two real-world datasets validate that our approach can effectively improve the performance of search query based age and gender prediction and consistently outperform many baseline methods.\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3291034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3291034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

在线用户的年龄和性别等人口统计数据在个性化web应用程序中起着重要作用。然而,直接获取在线用户的人口统计信息是很困难的。幸运的是,搜索查询可以覆盖许多在线用户,并且来自不同人口统计数据的用户的搜索查询通常在内容和写作风格上有所不同。因此,搜索查询可以为人口统计预测提供有用的线索。在本文中,我们研究了基于用户搜索查询的人口统计预测,并提出了一种神经网络方法。由于搜索查询可能非常嘈杂,而且其中许多是无用的,因此在我们的方法中,我们提出了一个带注意的分层用户表示(HURA)模型,以从他们的搜索查询中学习信息丰富的用户表示,而不是将所有查询组合在一起进行用户表示。我们的HURA模型首先使用单词编码器从单词中学习搜索查询的表示,该编码器由CNN网络和单词级注意网络组成,以选择重要的单词。然后,我们使用查询编码器根据用户搜索查询的表示来学习用户的表示,该编码器包含一个CNN网络来捕获搜索查询的本地上下文,以及一个查询级关注网络来选择信息丰富的搜索查询进行人口统计预测。在两个真实数据集上的实验验证了我们的方法可以有效地提高基于年龄和性别的搜索查询预测的性能,并且始终优于许多基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Demographic Prediction using Search Query
Demographics of online users such as age and gender play an important role in personalized web applications. However, it is difficult to directly obtain the demographic information of online users. Luckily, search queries can cover many online users and the search queries from users with different demographics usually have some difference in contents and writing styles. Thus, search queries can provide useful clues for demographic prediction. In this paper, we study predicting users' demographics based on their search queries, and propose a neural approach for this task. Since search queries can be very noisy and many of them are not useful, instead of combining all queries together for user representation, in our approach we propose a hierarchical user representation with attention (HURA) model to learn informative user representations from their search queries. Our HURA model first learns representations for search queries from words using a word encoder, which consists of a CNN network and a word-level attention network to select important words. Then we learn representations of users based on the representations of their search queries using a query encoder, which contains a CNN network to capture the local contexts of search queries and a query-level attention network to select informative search queries for demographic prediction. Experiments on two real-world datasets validate that our approach can effectively improve the performance of search query based age and gender prediction and consistently outperform many baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DAPA: The WSDM 2019 Workshop on Deep Matching in Practical Applications Solving the Sparsity Problem in Recommendations via Cross-Domain Item Embedding Based on Co-Clustering More Than Just Words: Modeling Non-Textual Characteristics of Podcasts Pleasant Route Suggestion based on Color and Object Rates Session details: Session 6: Networks and Social Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1