从序列中挖掘频繁模式

Jun-yan Zhang, Fan Min
{"title":"从序列中挖掘频繁模式","authors":"Jun-yan Zhang, Fan Min","doi":"10.1109/ICCIAUTOM.2011.6183913","DOIUrl":null,"url":null,"abstract":"Pattern mining is a popular issue in biological sequence analysis. In this paper, we propose new definitions related to the pattern frequency, where gaps are mined instead of specified. We develop algorithm with polynomial complexities. Patterns can grow from both sides, and Apriori property holds. Some interesting biological patterns are mined by our algorithm.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mining frequent patterns from sequences\",\"authors\":\"Jun-yan Zhang, Fan Min\",\"doi\":\"10.1109/ICCIAUTOM.2011.6183913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern mining is a popular issue in biological sequence analysis. In this paper, we propose new definitions related to the pattern frequency, where gaps are mined instead of specified. We develop algorithm with polynomial complexities. Patterns can grow from both sides, and Apriori property holds. Some interesting biological patterns are mined by our algorithm.\",\"PeriodicalId\":177039,\"journal\":{\"name\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6183913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6183913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模式挖掘是生物序列分析中的一个热点问题。在本文中,我们提出了与模式频率相关的新定义,其中间隙被挖掘而不是指定。我们开发了具有多项式复杂度的算法。模式可以从两边生长,Apriori属性成立。我们的算法挖掘了一些有趣的生物模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining frequent patterns from sequences
Pattern mining is a popular issue in biological sequence analysis. In this paper, we propose new definitions related to the pattern frequency, where gaps are mined instead of specified. We develop algorithm with polynomial complexities. Patterns can grow from both sides, and Apriori property holds. Some interesting biological patterns are mined by our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dynamic scheduling parallel test system with CVI A research of algorithm based on probability weighted fuzzy association rules Design of assembly line of diesel engine factory based on RFID technology Application of genetic algorithm in computer aided design A new method of parameters determined in image recognition by PCNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1