低分辨率热成像传感器人体受试者的概率确定方法

Yongwoo Jeong, Kwanwoo Yoon, KyoungHo Joung
{"title":"低分辨率热成像传感器人体受试者的概率确定方法","authors":"Yongwoo Jeong, Kwanwoo Yoon, KyoungHo Joung","doi":"10.1109/SAS.2014.6798925","DOIUrl":null,"url":null,"abstract":"In this work, we present a method of determining human subjects via a low-resolution thermal imaging sensor. Since the image quality of the low-resolution thermal imaging sensor could be suffering from heat signatures and recognizable patterns of human subjects are unable to be determined due to resolution issues, it is recommended to employ a probabilistic method. This paper presents how human subjects can be expressed in terms of pixel size, standard deviation, label movement, vector tracking, label lifetime and a rewarding system based on those. Various pre and post-image processing methods will be covered including background collection, Gaussian filtering, segmentation, local/global adaptive threshold and background learning.","PeriodicalId":125872,"journal":{"name":"2014 IEEE Sensors Applications Symposium (SAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Probabilistic method to determine human subjects for low-resolution thermal imaging sensor\",\"authors\":\"Yongwoo Jeong, Kwanwoo Yoon, KyoungHo Joung\",\"doi\":\"10.1109/SAS.2014.6798925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a method of determining human subjects via a low-resolution thermal imaging sensor. Since the image quality of the low-resolution thermal imaging sensor could be suffering from heat signatures and recognizable patterns of human subjects are unable to be determined due to resolution issues, it is recommended to employ a probabilistic method. This paper presents how human subjects can be expressed in terms of pixel size, standard deviation, label movement, vector tracking, label lifetime and a rewarding system based on those. Various pre and post-image processing methods will be covered including background collection, Gaussian filtering, segmentation, local/global adaptive threshold and background learning.\",\"PeriodicalId\":125872,\"journal\":{\"name\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2014.6798925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2014.6798925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在这项工作中,我们提出了一种通过低分辨率热成像传感器确定人体受试者的方法。由于低分辨率热成像传感器的图像质量可能会受到热信号的影响,并且由于分辨率问题无法确定人体受试者的可识别模式,因此建议采用概率方法。本文介绍了人类受试者如何在像素大小、标准差、标签运动、矢量跟踪、标签寿命和基于这些的奖励系统方面进行表达。各种图像预处理和后处理方法将包括背景采集,高斯滤波,分割,局部/全局自适应阈值和背景学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic method to determine human subjects for low-resolution thermal imaging sensor
In this work, we present a method of determining human subjects via a low-resolution thermal imaging sensor. Since the image quality of the low-resolution thermal imaging sensor could be suffering from heat signatures and recognizable patterns of human subjects are unable to be determined due to resolution issues, it is recommended to employ a probabilistic method. This paper presents how human subjects can be expressed in terms of pixel size, standard deviation, label movement, vector tracking, label lifetime and a rewarding system based on those. Various pre and post-image processing methods will be covered including background collection, Gaussian filtering, segmentation, local/global adaptive threshold and background learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-power wireless interface for handheld smart metering devices PointsBug versus TangentBug algorithm, a performance comparison in unknown static environment RFID coordinate registration for agricultural process sensing Standard Uncertainty estimation on polynomial regression models Design and simulation of a Micro Hotplate for MEMS based integrated gas sensing system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1