{"title":"R-处理器:0.4V弹性处理器,采用65纳米CMOS,具有电压可升级和低开销原位错误检测和纠正技术","authors":"Seongjong Kim, Mingoo Seok","doi":"10.1109/VLSIC.2014.6858421","DOIUrl":null,"url":null,"abstract":"This paper presents a design approach for upgrading the resiliency of ultra-low-voltage (ULV) microprocessors through a voltage-scalable and low-overhead in-situ error detection and correction (EDAC) technique. Particular efforts are made to overcome the poor voltage scalability and area/energy/throughput overhead of the existing EDAC techniques when applied to ULV designs. The 0.4 V, 16 b microprocessor employing the proposed EDAC and dynamic frequency scaling schemes is demonstrated in 65 nm. The microprocessor can (1) automatically modulate fCLK based on error flags across static/slow variations and (2) in-situ detect and correct the errors from fast dynamic variations, virtually eliminating timing margins. At a typical process/voltage/temperature (PVT) corner, the proposed design achieves 4.9× throughput and 59% energy efficiency improvement at only 9.5% area overhead over the baseline design under the worst-case timing margin.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"R-processor: 0.4V resilient processor with a voltage-scalable and low-overhead in-situ error detection and correction technique in 65nm CMOS\",\"authors\":\"Seongjong Kim, Mingoo Seok\",\"doi\":\"10.1109/VLSIC.2014.6858421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a design approach for upgrading the resiliency of ultra-low-voltage (ULV) microprocessors through a voltage-scalable and low-overhead in-situ error detection and correction (EDAC) technique. Particular efforts are made to overcome the poor voltage scalability and area/energy/throughput overhead of the existing EDAC techniques when applied to ULV designs. The 0.4 V, 16 b microprocessor employing the proposed EDAC and dynamic frequency scaling schemes is demonstrated in 65 nm. The microprocessor can (1) automatically modulate fCLK based on error flags across static/slow variations and (2) in-situ detect and correct the errors from fast dynamic variations, virtually eliminating timing margins. At a typical process/voltage/temperature (PVT) corner, the proposed design achieves 4.9× throughput and 59% energy efficiency improvement at only 9.5% area overhead over the baseline design under the worst-case timing margin.\",\"PeriodicalId\":381216,\"journal\":{\"name\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2014.6858421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
R-processor: 0.4V resilient processor with a voltage-scalable and low-overhead in-situ error detection and correction technique in 65nm CMOS
This paper presents a design approach for upgrading the resiliency of ultra-low-voltage (ULV) microprocessors through a voltage-scalable and low-overhead in-situ error detection and correction (EDAC) technique. Particular efforts are made to overcome the poor voltage scalability and area/energy/throughput overhead of the existing EDAC techniques when applied to ULV designs. The 0.4 V, 16 b microprocessor employing the proposed EDAC and dynamic frequency scaling schemes is demonstrated in 65 nm. The microprocessor can (1) automatically modulate fCLK based on error flags across static/slow variations and (2) in-situ detect and correct the errors from fast dynamic variations, virtually eliminating timing margins. At a typical process/voltage/temperature (PVT) corner, the proposed design achieves 4.9× throughput and 59% energy efficiency improvement at only 9.5% area overhead over the baseline design under the worst-case timing margin.