基于fpga的通用神经网络架构

Nicole Chalhoub, F. Muller, M. Auguin
{"title":"基于fpga的通用神经网络架构","authors":"Nicole Chalhoub, F. Muller, M. Auguin","doi":"10.1109/IES.2006.357476","DOIUrl":null,"url":null,"abstract":"In this paper, we defined a generic architecture for the extraction phase of a multi layer neural network algorithm to be implemented on a Virtex-4 FPGA. This architecture can be applied to any multi layer neural network composed of a given number of layers and a given number of neurons in each layer. In addition this architecture enhances the density of the FPGA by supporting the two concepts of time multiplexing and partial dynamic reconfiguration. Several networks with different sizes were implemented based on this generic architecture. Based on those implementations, we'll analyse the performances of a virtex-4 via a multi layer neural network by analyzing the variation of the minimum period and the number of occupied resources. This work was made in collaboration with the NodBox company (thierry.fargas@nodbox.biz) and Xilinx company (jean-louis.brelet@xilinx.com).","PeriodicalId":412676,"journal":{"name":"2006 International Symposium on Industrial Embedded Systems","volume":"138 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"FPGA-based generic neural network architecture\",\"authors\":\"Nicole Chalhoub, F. Muller, M. Auguin\",\"doi\":\"10.1109/IES.2006.357476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we defined a generic architecture for the extraction phase of a multi layer neural network algorithm to be implemented on a Virtex-4 FPGA. This architecture can be applied to any multi layer neural network composed of a given number of layers and a given number of neurons in each layer. In addition this architecture enhances the density of the FPGA by supporting the two concepts of time multiplexing and partial dynamic reconfiguration. Several networks with different sizes were implemented based on this generic architecture. Based on those implementations, we'll analyse the performances of a virtex-4 via a multi layer neural network by analyzing the variation of the minimum period and the number of occupied resources. This work was made in collaboration with the NodBox company (thierry.fargas@nodbox.biz) and Xilinx company (jean-louis.brelet@xilinx.com).\",\"PeriodicalId\":412676,\"journal\":{\"name\":\"2006 International Symposium on Industrial Embedded Systems\",\"volume\":\"138 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Industrial Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IES.2006.357476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Industrial Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IES.2006.357476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们为多层神经网络算法的提取阶段定义了一个通用架构,该算法将在Virtex-4 FPGA上实现。这种结构可以应用于任何由给定层数和每层中给定神经元数组成的多层神经网络。此外,该结构通过支持时间复用和部分动态重构两个概念来增强FPGA的密度。基于这种通用架构,实现了几个不同规模的网络。基于这些实现,我们将通过分析最小周期的变化和占用资源的数量,通过多层神经网络分析virtex-4的性能。这项工作是与NodBox公司(thierry.fargas@nodbox.biz)和Xilinx公司(jean-louis.brelet@xilinx.com)合作完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA-based generic neural network architecture
In this paper, we defined a generic architecture for the extraction phase of a multi layer neural network algorithm to be implemented on a Virtex-4 FPGA. This architecture can be applied to any multi layer neural network composed of a given number of layers and a given number of neurons in each layer. In addition this architecture enhances the density of the FPGA by supporting the two concepts of time multiplexing and partial dynamic reconfiguration. Several networks with different sizes were implemented based on this generic architecture. Based on those implementations, we'll analyse the performances of a virtex-4 via a multi layer neural network by analyzing the variation of the minimum period and the number of occupied resources. This work was made in collaboration with the NodBox company (thierry.fargas@nodbox.biz) and Xilinx company (jean-louis.brelet@xilinx.com).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Complex Protocol Layer as a linux User-Space Process From UML to Petri Nets for non functional Property Verification A heuristic based method for automatic deployment of distributed component based applications Holistic Modelling of an Integrated Renewable Energy System Controller, Enabling Rapid Hardware Prototyping NOCDEX: Network on Chip Design Space Exploration Through Direct Execution and Options Selection Through Principal Component Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1