{"title":"结合双电源,双阈值和晶体管尺寸降低功耗","authors":"S. Augsburger, B. Nikolić","doi":"10.1109/ICCD.2002.1106788","DOIUrl":null,"url":null,"abstract":"Multiple supply voltages, multiple transistor thresholds and transistor sizing could be used to reduce the power dissipation of digital blocks. This paper presents a framework for evaluating the effectiveness of each of these approaches independently and in conjunction with each other. Results show the advantages of multiple supply, transistor sizing, and multiple threshold can be compounded to maximize power reduction. The order of application of these techniques determines the final savings in active and leakage power.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Combining dual-supply, dual-threshold and transistor sizing for power reduction\",\"authors\":\"S. Augsburger, B. Nikolić\",\"doi\":\"10.1109/ICCD.2002.1106788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple supply voltages, multiple transistor thresholds and transistor sizing could be used to reduce the power dissipation of digital blocks. This paper presents a framework for evaluating the effectiveness of each of these approaches independently and in conjunction with each other. Results show the advantages of multiple supply, transistor sizing, and multiple threshold can be compounded to maximize power reduction. The order of application of these techniques determines the final savings in active and leakage power.\",\"PeriodicalId\":164768,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2002.1106788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining dual-supply, dual-threshold and transistor sizing for power reduction
Multiple supply voltages, multiple transistor thresholds and transistor sizing could be used to reduce the power dissipation of digital blocks. This paper presents a framework for evaluating the effectiveness of each of these approaches independently and in conjunction with each other. Results show the advantages of multiple supply, transistor sizing, and multiple threshold can be compounded to maximize power reduction. The order of application of these techniques determines the final savings in active and leakage power.