{"title":"基于部署优化和协同干扰的无人机辅助安全通信","authors":"Hongbing Li, Juan Wu, L. Luo, Jiang Xiong","doi":"10.1109/ICICIP53388.2021.9642178","DOIUrl":null,"url":null,"abstract":"This paper investigates the jointly transmit power and unmanned aerial vehicle (UAV)/jammer deployment optimization problem for UAV enabled jammer-assisted secure communication systems, where a jammer is exploited to assist transmitting data from a source node to a legitimate destination node in the presence of multiple eavesdroppers. To increase the secrecy energy efficiency, which is defined as the achievable secrecy rate per energy consumption unit, we formulate a secrecy energy efficiency maximization problem by jointly optimizing the transmit power and UAV/jammer deployment. The resulting optimization problem is shown to be a non-convex and fractional optimization problem, which is challenging to solve. As such, we decompose the original problem into two sub-problems, and then, an efficient iterative algorithm is proposed by leveraging the extensive search method and Dinkelbach method in combination with successive convex approximation (SCA) techniques. Numerical simulation results show that the proposed scheme significantly improves the secrecy energy efficiency of the system.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV-Aided Secure Communication With Deployment Optimization and Cooperative Jamming\",\"authors\":\"Hongbing Li, Juan Wu, L. Luo, Jiang Xiong\",\"doi\":\"10.1109/ICICIP53388.2021.9642178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the jointly transmit power and unmanned aerial vehicle (UAV)/jammer deployment optimization problem for UAV enabled jammer-assisted secure communication systems, where a jammer is exploited to assist transmitting data from a source node to a legitimate destination node in the presence of multiple eavesdroppers. To increase the secrecy energy efficiency, which is defined as the achievable secrecy rate per energy consumption unit, we formulate a secrecy energy efficiency maximization problem by jointly optimizing the transmit power and UAV/jammer deployment. The resulting optimization problem is shown to be a non-convex and fractional optimization problem, which is challenging to solve. As such, we decompose the original problem into two sub-problems, and then, an efficient iterative algorithm is proposed by leveraging the extensive search method and Dinkelbach method in combination with successive convex approximation (SCA) techniques. Numerical simulation results show that the proposed scheme significantly improves the secrecy energy efficiency of the system.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UAV-Aided Secure Communication With Deployment Optimization and Cooperative Jamming
This paper investigates the jointly transmit power and unmanned aerial vehicle (UAV)/jammer deployment optimization problem for UAV enabled jammer-assisted secure communication systems, where a jammer is exploited to assist transmitting data from a source node to a legitimate destination node in the presence of multiple eavesdroppers. To increase the secrecy energy efficiency, which is defined as the achievable secrecy rate per energy consumption unit, we formulate a secrecy energy efficiency maximization problem by jointly optimizing the transmit power and UAV/jammer deployment. The resulting optimization problem is shown to be a non-convex and fractional optimization problem, which is challenging to solve. As such, we decompose the original problem into two sub-problems, and then, an efficient iterative algorithm is proposed by leveraging the extensive search method and Dinkelbach method in combination with successive convex approximation (SCA) techniques. Numerical simulation results show that the proposed scheme significantly improves the secrecy energy efficiency of the system.