Arnaud Bletterer, F. Payan, M. Antonini, Anis Meftah
{"title":"面向大范围历史遗址的重建:一种基于局部图形的再现方式来重新采样巨大的文物","authors":"Arnaud Bletterer, F. Payan, M. Antonini, Anis Meftah","doi":"10.2312/gch.20181342","DOIUrl":null,"url":null,"abstract":"Nowadays, LiDAR scanners are able to digitize very wide historical sites, leading to point clouds composed of billions of points. These point clouds are able to describe very small objects or elements disseminated in these sites, but also exhibit numerous defects in terms of sampling quality. Moreover, they sometimes contain too many samples to be processed as they are. In this paper, we propose a local graph-based structure to deal with the set of LiDAR acquisitions of a digitization campaign. Each acquisition is considered as a graph representing the local behavior of the captured surface. Those local graphs are then connected together to obtain a single and global representation of the original scene. This structure is particularly suitable for resampling gigantic points clouds. We show how we can reduce the number of points drastically while preserving the visual quality of large and complex sites, whatever the number of acquisitions.","PeriodicalId":203827,"journal":{"name":"Eurographics Workshop on Graphics and Cultural Heritage","volume":"40 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards the Reconstruction of Wide Historical Sites: A Local Graph-based Representation to Resample Gigantic Acquisitions\",\"authors\":\"Arnaud Bletterer, F. Payan, M. Antonini, Anis Meftah\",\"doi\":\"10.2312/gch.20181342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, LiDAR scanners are able to digitize very wide historical sites, leading to point clouds composed of billions of points. These point clouds are able to describe very small objects or elements disseminated in these sites, but also exhibit numerous defects in terms of sampling quality. Moreover, they sometimes contain too many samples to be processed as they are. In this paper, we propose a local graph-based structure to deal with the set of LiDAR acquisitions of a digitization campaign. Each acquisition is considered as a graph representing the local behavior of the captured surface. Those local graphs are then connected together to obtain a single and global representation of the original scene. This structure is particularly suitable for resampling gigantic points clouds. We show how we can reduce the number of points drastically while preserving the visual quality of large and complex sites, whatever the number of acquisitions.\",\"PeriodicalId\":203827,\"journal\":{\"name\":\"Eurographics Workshop on Graphics and Cultural Heritage\",\"volume\":\"40 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Workshop on Graphics and Cultural Heritage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/gch.20181342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Graphics and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/gch.20181342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards the Reconstruction of Wide Historical Sites: A Local Graph-based Representation to Resample Gigantic Acquisitions
Nowadays, LiDAR scanners are able to digitize very wide historical sites, leading to point clouds composed of billions of points. These point clouds are able to describe very small objects or elements disseminated in these sites, but also exhibit numerous defects in terms of sampling quality. Moreover, they sometimes contain too many samples to be processed as they are. In this paper, we propose a local graph-based structure to deal with the set of LiDAR acquisitions of a digitization campaign. Each acquisition is considered as a graph representing the local behavior of the captured surface. Those local graphs are then connected together to obtain a single and global representation of the original scene. This structure is particularly suitable for resampling gigantic points clouds. We show how we can reduce the number of points drastically while preserving the visual quality of large and complex sites, whatever the number of acquisitions.